Performance Certification to EMC Directive

Normative Standard:

EN61000-6-2, EN 61000-6-3: 2007

Test Unit Description and Serial Number:

TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359)

S/N: EMI Prototype

Test Report # 2956

Dates of Test: 11-16-2009 through 11-23-2009

Test Laboratory:

Midwest EMI Associates, Inc.

Electromagnetic Interference Laboratory

21234 W. Commercial Drive

Mundelein, Illinois 60060

Tel: (847)-918-9886

EN 61000-6-3 EMISSIONS

TEST METHOD	LIMITS
IEC 61000-6-3 Am 1:2007 (Cispr 11) Radiated Emissions	В
IEC 61000-6-3 Am 1:2007 (Cispr 11) Conducted Emissions (DC Power Supply)	В

EN 61000-6-2 IMMUNITY

	TEST METHOD				LEVEL
	EN 61000-4-2 Cons Ed 1.2:2009			2, 4, 6 and 8 kV Air Discharge	A
_	Electrostatic Discharge Test			2 and 4 kV Contact Discharge	11
_	EN 61000-4-3 Ed. 3.0: 2009	Ī		10 V/M (10 V/M minimum)	A
	Radiated Immunity Test			AM modulation, 900 Mhz, 100% AM, 200 Hz, Square 0-1000, 1.4-2.0 GHz, 2.0-2.7 GHz (reduced level)	2 1
_	EN 61000-4-4 Ed. 2.0: 2004-07	I		.5, 1 and 2 kV	A
	Electrical Fast Transients			Line to Line	11
	EN 61000-4-5 Ed. 2.0: 2006	T		.5 kV	A
	Electrical Surge Test			Line to Line	11
	EN 61000-4-6 Ed. 2.2: 2009			3 & 10 V RMS	A
	Conducted Immunity			Common Mode	11
	EN 61000-4-8: 2001-03	Ī		30 A/M Min (800 A/M Applied)	A
=	Magnetic Immunity		Three Axes		

Performance Level:

- A- During testing, normal performance occurs within the specification limits.
- B- During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention.
- C- During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset.
- D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or to loss or corruption of data.

George Bowman

Report by: Midwest EMI Associates

Narte Certified Engineer, EMC-000738NE

Midwest EMI Associates, Inc. Electromagnetic Interference Laboratory 21234 W. Commercial Drive Mundelein, Il 60060

Midwest EMI Associates Test Service Report No. 2956

Test Specifications

EN 61000-6-3 Level B Conducted Emissions EN 61000-6-3 Level B Radiated Emissions EN 61000-4-2 Electrostatic Discharge EN 61000-4-3 Radiated Immunity EN 61000-4-4 Electrical Fast Transients EN 61000-4-5 Surge Test EN 61000-4-6 Conducted Immunity Test EN 61000-4-8 Magnetic Immunity

Test Device: TFT REMOTE RELAY INTERFACE /

CANBUS INTERFACE (EP0426/EP0359)

Serial Number: EMI Prototype

Conducted For: Mr. Tim Miller

Task Force Tips 3701 Innovation Way Valparaiso, IN 46383 Ph: 1-219-462-6161 Fax: 1-219-464-7155

Dates of Test: 11-16-2009 through 11-23-2009

Technical Data Taken by and Report Written by:

> George Bowman Midwest EMI Associates

NARTE Certified Engineer, EMC-000738NE

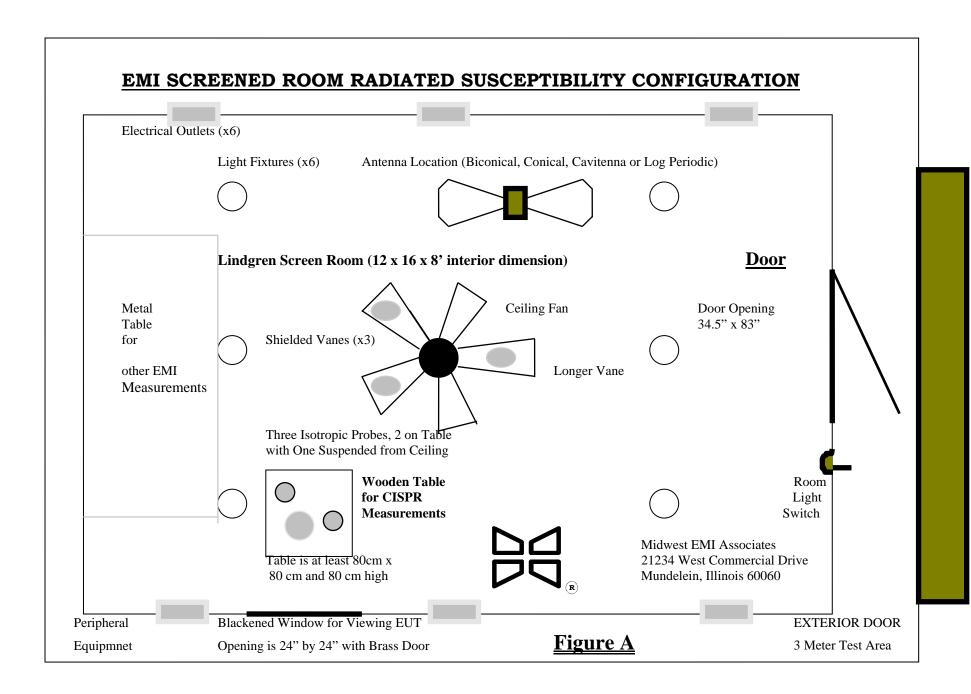
Approved By:

Mr. Tim Miller Senior Design Engineer Task Force Tips, Inc.

1.0 PURPOSE:

The purpose of this test sequence is to qualify the compliance of the TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359) to the IEC 61000-6-2 and 61000-6-3 commercial standards. This report covers testing to the IEC 61000-6-3 (Cispr 11) B level radiated and conducted emissions, IEC 61000-4-2 electrostatic discharge test, IEC 61000-4-3 radiated immunity standards, IEC 61000-4-4 electrical fast transients, IEC 61000-4-5 Surge Test, IEC 61000-4-6 conducted immunity test and IEC 61000-4-8 magnetic immunity test. The sponsor group has made many more improvements for this second round of tests.

2.0 TEST FACILITY:


All susceptibility testing was performed on the indoor three-meter site located at Midwest EMI Associates, 21234 W. Commercial Drive, Mundelein, Illinois 60060. Some testing utilized the screened room facility. The personnel access door measures 36" by 82" as shown in the attached room diagram, Figure A. Each power lead is filtered by a low-pass line filter. This interference filter provides substantially more insertion loss than that required for testing. The shielded room has within it a steel table with a copper ground plane (36"W X 72"L X 1/16"D thick) that is attached to the wall of the cage and is 3 feet off the floor of the cage, and has a DC resistance of less than 2.5 milliohms, complying with Military Standards 461. It also has a movable wooden table of 80 cm. height for CISPR testing. Power, which is available, consists of 120/230 VAC, 50/60 Hz.

Referring to Figure A, the major parts of the room which are used during testing are the interference filter which provides protection against external conducted signals, the screened viewing window which allows visual access to the device under test, AC line capacitors which properly terminate the line and neutral leads, and various antennas used for radiated emissions testing. The positions at which the device under test may be placed are identified on Figure A.

3.0 DESCRIPTION OF TEST SAMPLE:

The Y5920 Rev2 remote relay board designed under project EP0426 replaces the current Y5920 board. This board allows remote actuation of a customers equipment using the AUX1 or AUX2 buttons located on any RC monitor operator station. The board is equipped with 2 SPDT relays that can drive valves, lights, alarms, or interface to other controls. The Y5920 board receives commands from the RC monitor via TFT's RS-485 serial protocol. This board is typically powered by nominal 12 or 24 volt truck voltage. The board will typically be mounted in a painted die-cast aluminum enclosure.

The Y5740 CANbus interface board designed under project EP0359 will be used to interface any TFT RC monitor with a truck builders J1939 CANbus multiplex system. The board connects into a Y5110-B communication board mounted inside the RC monitor control box. This board is powered by 5 volts (Vcc) supplied from the Y5110-B communication board. The RC Tornado monitor used in this testing was previously tested and reported on Test Report #2794 (ISO) and Test Report #2732, 2771 (EMC).

3.2 POWER REQUIREMENT:

The primary power supplied to the test sample was a 12 Volt Lead Acid Battery however the normal power is a fire engine battery.

3.3 GROUNDING:

No grounding was supplied to the test sample since it is battery operated.

3.4 RADIATED CONFIGURATION:

The test sample was oriented so that the area exhibiting the greatest amount of radiation was facing the antenna that was the front of the device.

3.5 TEST SAMPLE OPERATION:

The device was operated in its controlling or active movement mode during the test.

4.0 DISPOSITION OF TEST SAMPLE:

Upon completion of the test, the test sample was returned to the sponsor group.

5.0 **REFERENCES**:

EN 61000-6-1 Ed. 2.0 (2005-03), "Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 1: Immunity for residential, commercial and light-industrial environments"

EN 61000-6-2 Ed. 2.0 (2007), "Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments"

EN 61000-6-3 Ed. 2.0 (2007), "Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 3: Emission standard for residential, commercial and light-industrial environments"

EN 61000-6-4 Ed. 2.0 (2006-07), "Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 4: Emission standard for industrial environments"

EN 61326 Ed. 1 (2006-06), "Electrical equipment for measurement, control and laboratory use - EMC requirements"

IEC 60601-1-2 (2005), "Medical Electrical Equipment, Part 1: General requirements for safety. 2. Collateral Standard: Electromagnetic compatibility – requirements and tests"

Mil Std 461E, Part 4 "Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference"

Federal Communications Commission Document MP-4 "FCC method Measurement of Radio Noise Emissions from Computing Devices"

VDE 0871 through 877 European documents

Midwest EMI Associates Test Services Standard Test Report 2956

Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

Current IEC Standards 61000-4-1 through 61000-4-11 and IEC Standard "Medical Electrical Equipment Part 1, General Requirements for Safety" issued by TC62A

Cispr 22 (EN55022), Consol. Ed. 5.2, 2006-03, "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement"

Cispr 11 (EN55011) Cons. Ed. 4.1, 2009, "Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement"

CISPR Publication Number 16-1-1, (2006-11) Cons. Edition 1.1, "Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus", 1998

MDS-201-0004, "Electromagnetic Compatibility Standard for Medical Devices", 1979

IEC 50 (161), "International Electrotechnical Vocabulary, Chapter 161, Electromagnetic Compatibility"

6.0 <u>GENERAL INFORMATION</u>:

A diagram of the EMI facility and test equipment used is shown in the Appendices to this manual. The spectrum analyzer and other equipment are calibrated periodically by using their manufacturers' services.

6.1 TEST PROCEDURES:

The test limits for CISPR and IEC test configurations are located at the end of the various appendices for convenience. All test results and procedures are shown in the Appendices. Hereinafter, the equipment under test will be referred to as the E.U.T. or by its full description.

6.2 TEST DESCRIPTIONS:

All procedures below not referenced by individual protocol ("MEMI-XXX") numbers fall under the master EMI protocol, MEMI-7 "Electromagnetic Interference". Presently commercial devices are tested to 1 GHz per international convention for emissions and susceptibility.

The possible range of tests that could have application either domestically or internationally are listed below along with applicable protocol numbers. The references supplied provide information on how to perform the test. CISPR 11 & 22, Military Standard 462, and EN 61000 part 4 series are used as references for all procedures.

Midwest EMI assumes no liability for the performance of designs in the field derived from these protocols and the recommended criteria of acceptability. Midwest EMI will perform these tests as a service exclusively and will make every effort to assure the data is presented accurately and that the testing is uniformly applied per standards but we cannot guarantee to our customers that the product will gain acceptance by the market. In particular for life sustaining equipment, Midwest EMI recommends that a larger base of tests be performed to gain an accurate understanding of product performance.

- 6.2.1 **Appendix A1 (CISPR Conducted Emissions)** Limits are plotted for FCC or CISPR requirements for Level B emissions. Recommended criterion of acceptability is that A or B Level emissions are passed.
- 6.2.2 **Appendix B1 (CISPR Radiated Emissions)** Limits are plotted for FCC or CISPR requirements for Level B emissions. For some equipment this may include electric and VDE style magnetic emissions. *Criterion of acceptability for Europe is that A or B level emissions must be passed.*
- 6.2.3 **Appendix C (EN61000-4-4 Fast Transients)** Limits for EN 60601-1-2 and FDA Reviewer's Guide compliance are 2 KV common and 1 KV differential applied to the power cables and .5 KV applied to peripheral cables. The criterion of acceptability is that there should be no permanent degradation in performance with the stress applied that is not recoverable automatically.
- 6.2.4 Appendix D (Radiated Susceptibility-EN 61000-4-3) Limits are 3 10 V/M from 10 KHz to 1 GHz per EN 61000-4-3. For this class of product the immunity of the device must exceed the 3 V/M requirement to meet the IEC 60601-1-2 requirements. The criterion of acceptability is that there should be no degradation in performance or hardware failure when the EUT is exposed to any level lower and including the limit. In all cases the device must fail safely or it is rejected.
- 6.2.5 Appendix E (EN 61000-4-5 Surge Immunity Test) Recommended limits are 2 KV common mode and 1 KV differential mode at angles of 0, 90, 180, and 270 degrees. Ten repetitions at each condition are applied to the EUT. The criterion of acceptability is no failure, serious malfunction or alarm may occur that is not self-recovered in 5 seconds.
- 6.2.6 **Appendix F (EN 61000-4-6 Conducted Immunity Test)** Conducted bulk energy is applied via a voltage coupler to power leads and peripheral cables longer than 3 meters. This test is invasive in that the power line is preconditioned to allow the RF voltage to be applied to all leads of the equipment under test. It is also applied to peripheral cables using the similar coupler of the CS114 test except at a higher intensity typically. The criterion of acceptability is that no malfunction occurs up to and including the 3 or 10 V RMS limit.
- 6.2.7 **Appendix G (EN 61000-4-2 ESD Test)** The EUT is exposed to high intensity electrostatic pulses up to 8 kV air or 4 kV contact discharge. The criterion of passing this test is no adverse malfunction that is not self-recovering within 5 seconds of the termination of the pulse.
- 6.2.8 Appendix H (EN 61000-4-8 Magnetic Immunity Test) The EUT is exposed to high level magnetic fields of up to 10 Gauss. The criterion of passing this test is no adverse malfunction during application of the fields.

6.3 SPECTRUM ANALYZER CHARACTERISTICS:

This facility uses a type TEK 2756P/TEK 2712 automated spectrum analyzer and a USAFlex 486 Advanta 50 MHz measuring system. The 6 dB impulse bandwidth settings and wideband correction xaaaaaaaaafactors are listed below:

TEK 2756P Analyzer

Band Setti	width ng	Wideband <u>6dB Bandwi</u>	<u>dth</u>	Correction Factor	on	<u>Facto</u> :	r Appl	<u>ied</u>
3	MHz	3.028	MHz	-9.623	dB	-10	dB	
1	MHz	915.0	KHz	.7716	dΒ	0	dΒ	
.1	MHz	116.4	KHz	18.68	dΒ	20	dΒ	
10	KHz	9.96	KHz	40.03	dΒ	40	dΒ	
1	KHz	926	Hz	60.67	dΒ	60	dB	
.1	KHz	96	Hz	80.35	dΒ	80	dΒ	
10	Hz	10	Hz	100	dΒ	100	dΒ	

TEK 2712 Analyzer (Dual Analyzers in Use)

Bandwidth Setting	Wideband 6dB Bandwi		tion <u>Factor</u>		<u>Facto</u>	<u>r Appl</u>	<u>ied</u>
5 MHz	4.92	MHz	-13.84	dB	-14	dB	
1 MHz	.932	KHz	.6117	dΒ	0	dΒ	
.3 MHz	.31	KHz	10.173	dΒ	10.5	dΒ	
120 KHz	119	KHz	Cispr Re	quirec	l Bandwi	dth	
9 KHz	8.48	KHz	41.43	dB	41	dΒ	
3 KHz	3300	Hz	49.63	dΒ	50.5	dΒ	
1 KHz	860	Hz	61.31	dΒ	60	dΒ	
200 Hz	200	Hz	73.98	dΒ	74	dΒ	

For test purposes, the correction factors are chosen to be at the nearest 20dB increment.

6.4 Certificates of Calibration

All certificates of calibration are maintained in a binder located at Midwest EMI Associates and are available for inspection. The present expiration dates of certified calibration by our manufacturers are:

a)	Tek2756P Spectrum Analyzer	BO20224	26 Mar 10
b)	Wavetek 2520A RF Generator	0222011	30 Mar 10
c)	Carver TFM-35 250 W/Ch. Audio Amp	3097104	N/A
d)	ENI RF Power Amplifier (525LA)	367	N/A
e)	ENI RF Power Amplifier (2100L)	129	N/A
f)	Eaton 15100B Power Amplifier	1529-07090	24 Mar 10
g)	Tektronix TDS 420 Oscilloscope	B021212	24 Mar 10
h)	EMCO 3109 Power Biconical (1/3/10 Meters)	9011-2504	17 Mar 10
i)	EMCO 3101 Power Conical	9007-3450	N/A (1/3m)
j)	EMCO 6502 Active Loop	1038	18 Mar 10
k)	EMCO 3301B Active E Field	9009-3044	19 Mar 10
1)	EMCO 3147 Wide Range Log Periodic	9102-1019	23 Mar 10
m)	EMCO 3107B Power E Field	9310-2435	N/A

Midwest EMI Associates Test Services Standard Test Report 2956

Ref. TFT	RECAY	INTERFAC	TF. FEP0426	EP0359.doc

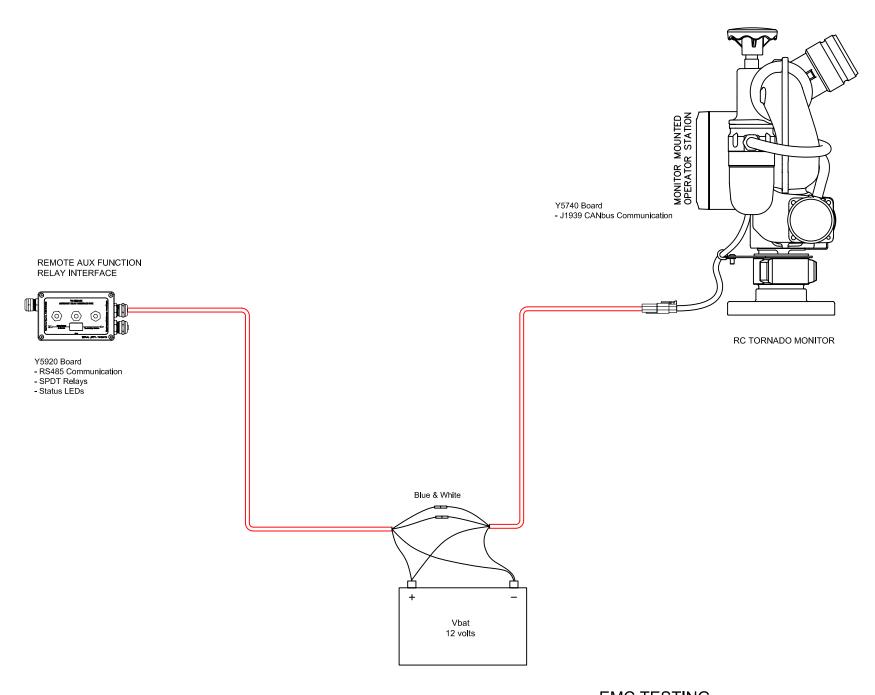
\	A	12456	NI / A
m)	Amplifier Research FM1000	12456	N/A
n)	Amplifier Research FP1000	60701	21 Mar 10
0)	Amplifier Research FP1000	60488	3 Mar 10
p)	IFI EFS-4 E Field Susceptibility	39883	14 Mar 10
`	(Holladay 3004EX with HSE405 Probe)	4447 D	3 T / A
q)	IFI LMT-B Light Modulator	1117-B	N/A
r)	IFI EFS-1 E Field Susceptibility	245738	N/A
s)	Solar 6741-1 RF Current Probe	911308	N/A
t)	Fluke 45 True RMS Voltmeter	EJ574714013	24 Mar 10
u)	Schaffner NSG 433 ESD Gun	107	
	and Contact Discharge Adapter	402-664/0	30 Mar 10
v)	Solar Loop Sensor 7334-1		N/A
w)	Solar Loop Sensor 9311-1	931101	N/A
x)	Solar RF Coupler 7415-3 906016	N/A	
y)	Solar Line Impedance Stabilization Network	8028-50-TS-24-	BNC N/A
z)	Solar VDE Filter Network	8907-250-TS-24	-BP N/A
aa)	Ohmic Instrument BET-300-ADL	522	25 Mar 10
ab)	Werlatone C1795 Dir. Coupler	3442	30 Mar 10
ac)	Solar Current Injection Probe Type 9108-1N	935012	N/A
ad)	Tektronix TR 503B Tracking Generator	B011216	25 Mar 10
ae)	Acme 2KVA Isolation Transformer	T-3-53042-S	N/A
af)	Xentek Extreme Isolation Transformer Model 5410 (2 in use)	
ag)	Tektronix P6202 RF Probe		N/A
ah)	Staco Power Variac Type 3PN2210 (0-140VAC) 3.1KVA	N/A	
ai)	Helmholtz Coil Stepdown Xfrmr-Chicago Xfrmer Type	P-6492	N/A
aj)	•	1621	25 Mar 10
ak)	Holladay Magnetic Field Probe Model HI-3624	83957	15 Mar 10
al)	Tektronix 2712 Spectrum Analyzer (Quasipeak)	B022520	24 Mar 10
am)	Voltec PM100 Power Analyzer	AA04/8495	25 Mar 10
an)	EMCO 3142 Biconilog Antenna	1052	1 Mar 10
ao)	Haefely P90.1 EN 61000-4-4 Fast Transient Tester	083 593-14	19 Mar 10
ap)	Hewlett Packard 3400A AC Voltmeter	1218A14443 24	
aq)	Amplifier Research FP2031 Isotropic Probe	18309	5 Mar 10
ar)	Haefely 250 600/00 (61000-4-5 Surge Tester)	583 334-05	19 Mar 10
as)	Fischer CISPR 14 Absorbing Clamp type F-201	235	7 Mar 10
at)	Fischer IEC 801-6 Transducer	165	23 Mar 10
au)	Solar 9123-1N Current Clamp	956015	23 Mar 10
av	Fischer IC 801-6 CDN FCC-801-M3-25	95	7 Mar 10
aw)	Tektronix 2712 Spectrum Analyzer (Quasipeak) B022981	24 Mar 10	/ Mai 10
ax)	C. C. Moore Automated Mast Assembly Model DAPM4/6	2111111110	N/A
ay)	C. C. Moore Automated Turntable Model DTT-4	N/A	11/11
ay) Z	Antenna Research LPB2520	1152	20 Mar 10
	Behlman Power Pass 50 Hz AC Source (50, 60, 400 Hz) 0005	N/A	20 Mai 10
ba) bb)	California Instruments WP1251 AC Source (50, 60 Hz)	N/A N/A	
		11/11	
bc) bd)	Plitron Extreme Toroidal Isolation Transformers (2) Edmund Scientific Thermometer/Hygrometer	None	31 Mar 10
be)	• •	TAOHC	30 Mar 10
bf)	Coaxial Bird Pads (x2) 8306-030-N3DB High Current Source, Associated Research 3030D	A140006	25 Mar 10
	California Instruments 5001ix High Power Source	HK52945	25 Mar 10 25 Mar 10
bg)	Camorina instruments 2001ix riigii Power Source	111134743	23 IVIAL 10

Midwest EMI Associates Test Services Standard Test Report 2956

Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

bh)	Line Leakage tester, Associated Research 510L		130007	25 Mar 10
bi)	Hipot Tester, Associated Research 3570D		090595	25 Mar 10
bh)	GAASfet Preamplifier		None	25 Mar 10
bi)	Ametek Tachometer Model 1726		R035292	24 Mar 10
bj)	Bird Attenuator (x2), 75 Watt, 75-A-MFN	J-10	R035290	N/A
bk)	HP 8482A Power Sensor		S/N: 2652A1	8474 24 Mar 10
bl)	HP 435B Power Meter		S/N: 2702A1	7563 24 Mar 10
bm)	Simpson Model 383 Thermometer	B001531	24 Mar 10	
bn)	Wavetek 27XT Voltmeter		96120787	24 Mar 10
bo)	HP 8657A Programmable Synthesizer	365	17 Mar 10	
bp)	Fluke 75			24 Mar 10
bq)	ENI 525LA			19 Mar 10
br)	Tek 495P Opt 5/7		B020147	30 Mar 10
bs)	Amplifier Research FP2036 (.5-5Ghz)			04 Sep 09

7.0 <u>CONCLUSION OF RADIO FREQUENCY INTERFERENCE</u> EMISSIONS AND SUSCEPTIBILITY TESTS:


The TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359) was evaluated for all tests in the configuration requested by the sponsor group for compliance with the diagnostic instruments standards, IEC 61326-1:2006 and IEC 61000-6-3:2007. The configuration requested was that of the packaged unit system in an orientation that exercised the relay function. For test purposes the sponsor group supplied lights that could be observed during all test sequences.

The prototype required a few changes as summarized below. After the changes were added, the device was fully functional and controlled the relays properly.

Changes

Replaced existing .1 uF monolithic capacitor with a 10 uF monolithic ceramic capacitor on the input to the DC switcher supply.

Added second LF1206E152-R10 ferrite chip to the input or in front of the DC switcher supply.

EMC TESTING COMPONENT SETUP 11/16/2009

Nemko Laboratory Authorisation

Aut. No.: ELA 175

EMC Laboratory: Midwest EMI Associates

21234 W. Commercial Drive, Unit F

Mundelein, IL 60060 USA

Scope of All standards for EMC and radio transmission that are listed

Authorization: on the accompanying page.

Nemko has assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against <u>ISO/IEC 17025</u> or equivalent. The laboratory also fulfils the conditions described in Nemko Document <u>NLA -10</u>. During the visit by the Nemko representative it was found that the Laboratory is capable of performing tests within the Scope of the Authorisation.

Accordingly, Nemko will normally accept test results from the laboratory on a partial or complete basis, with rights of review as stated in NLA-10, for certification of the products.

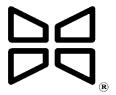
In order to maintain the Authorisation, the information given in the pertinent NLA-10 must be carefully followed. Nemko is to be promptly notified about any changes in the situation at the Laboratory, which may affect the basis for this Authorisation. The Authorisation may be withdrawn at any time if the conditions are no longer considered to be fulfilled.

The Authorisation is valid through 31 July 2010.

Dallas, Texas 12 Sep 2009

For Nemko AS:

1BKaterling


TB Ketterling, Nemko EMC Coordinator

Typical Test Configuration

Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

APPENDIX A1

FCC/VDE CONDUCTED EMISSIONS TEST

(EN55011, EN55022, EN55014)

1.0 **PURPOSE**:

The purpose of this test sequence is to perform compliance testing to FCC and VDE conducted emissions specifications. The test is always performed in a shielded enclosure with a Line Impedance Stabilization Network (LISN).

2.0 INTERIOR SHIELDED ROOM DESCRIPTION:

The 12.5' by 16.5' Lindgren indoor shielded room test site is situated in a 1250 sq. ft. building located at Midwest EMI Associates, 21234 W. Commercial Drive, Mundelein Illinois. This room has a solid steel exterior and copper interior with a blackened screen for visualization of the device under test. The Line Impedance Stabilization Network is bonded to a wall of the enclosure very near to the floor but in such a manner that its terminals are 40 centimeters off the floor. For both FCC and VDE tests, the LISN network has an approved low pass prefilter to permit proper measurement down to 10 kHz. In addition, if the EUT requires 220 VAC power, a Behlman Passport is provided capable of 1350 watts, 50 Hz. The LISN has applied to it a standard three terminal 120VAC IEC plug termination. If the plug style is different, then either a mating connector, a very short alligator clip network, or an equivalent length standard IEC cord is provided. In this case, the 220 VAC cord was used.

3.0 <u>CONFIGURATION AND OPERATION OF TEST SAMPLE</u>:

3.1 POWER REQUIREMENT:

The TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359) was operated in its normal mode using 12 VDC battery power.

3.2 GROUNDING:

Any possible alternate ground provided for the test sample was interrupted by the linoleum floor upon which the sample was placed and which situates the test sample 10 cm. above the floor of the lab area. The main ground for the test sample is established by connection of the third wire to a LISN located remotely in the screened room. The EMC receiver, a Tektronix 2712, is located outside the screen room and is grounded with a two inch copper strap at the rear of the instrument and a 2 AWG welding cable at the front of the instrument. The EMC receiver and all measurement equipment including computers are otherwise isolated from the room using a Plitron extreme isolation transformer.

3.3 CONDUCTED CONFIGURATION:

In conducted tests, the test sample was oriented on the metal floor at a 40 cm. height over the ground plane to satisfy Cispr 11 or 22 B level test criterions. The LISN was terminated directly

Midwest EMI Associates Test Services Standard Test Report 2956

Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

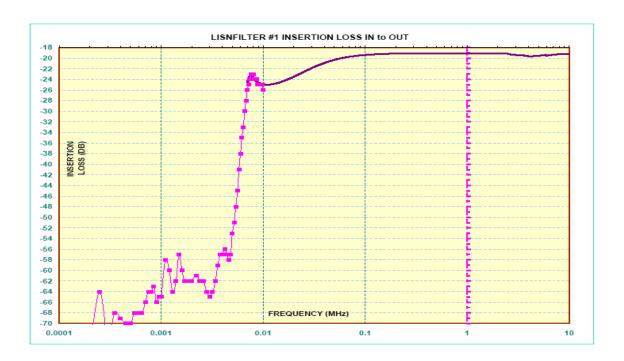
with a brick wall 10 kHz rolloff filter that provides 20 dB attenuation to the signal going to the spectrum analyzer. All calibration data is maintained in files inside the computer running the analyzer via the GPIB bus. Data was read and plotted in PEAK mode using the capabilities of the Tek 2756P.

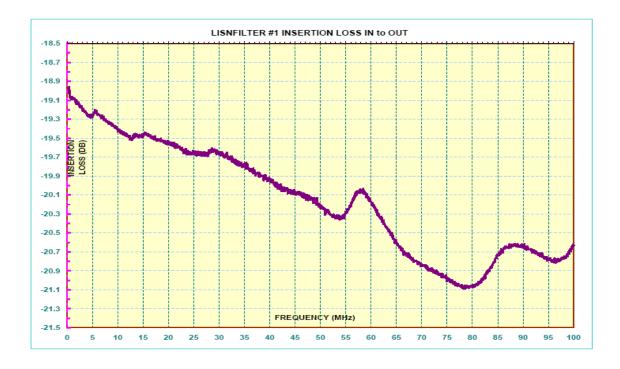
3.4 TEST SAMPLE OPERATION:

All test measurements were made with the unit in its normal measuring mode after a 3-minute power up period.

3.5 LIMITS OF ACCEPTANCE:

The general procedures are dictated in the individual protocols listed such as ANSI 63.4, FCC Part 15, CISPR 11, and CISPR 22. The limits for FCC rules presently are given in Part 15.109 of 47 CFR 1 (10-9-1990) Edition of the Federal Code of Regulations. For convenience these limits are plotted on the graphs and in registered in tabulated data.

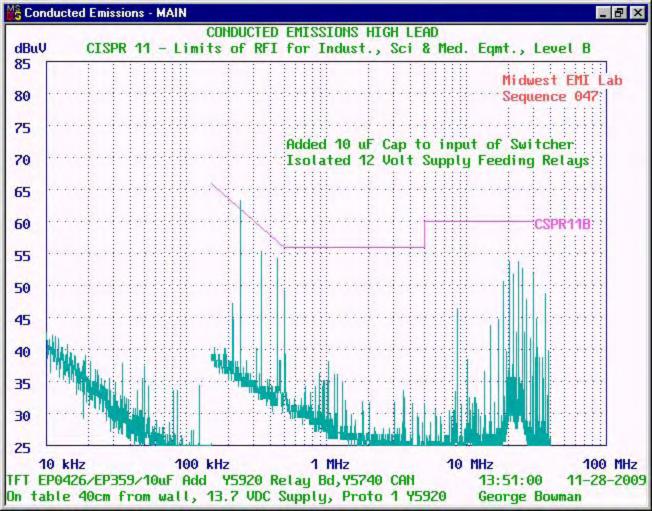

VDE LIMITS

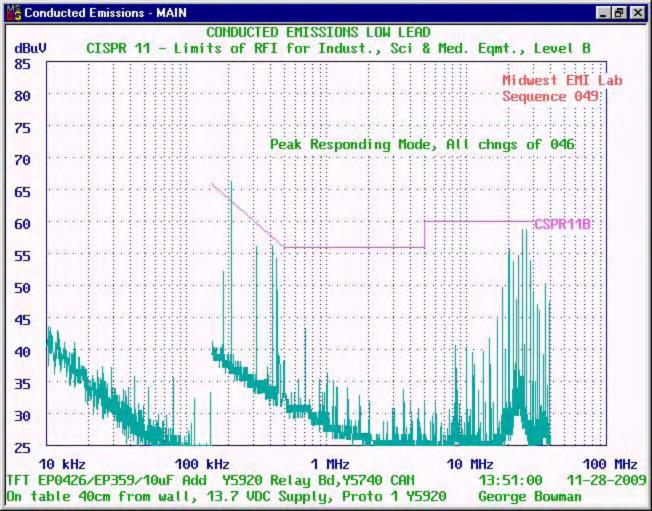

For CISPR 11 (EN55011), 22 (EN55022) or 14 (EN55014) B level conducted compliance starting at 150 kHz the allowed level is 66 dBuV and decreases at a linear rate with the log of frequency to 56 dBuV at 500 kHz. From 500 kHz to 5 MHz the allowed level is 56 dBuV, and 60 dBuV from 5 MHz to 30 MHz at the LISN mains.

3.6 CALIBRATION DATA:

The results of the latest recalibration of the LISN's are contained on the next page over the range of 1 kHz to 1 MHz. The LISN is isolated from the spectrum analyzer by two 10-dB pads on either side of a five-pole rolloff filter. The insertion loss of each LISN has been compared and calibrated to that of a perfect LISN whose response is also shown.

In the range higher than 1 MHz up to 100 MHz the characteristic of each LISN is flat with an insertion loss of no greater than 1.5 dB. In all cases the deviation from the perfect LISN response has been compensated for in a computer correction table file (approximately 150 points). The actual lower end of LISN response used for substantiation of customer data is 10 kHz.





4.0 <u>CONCLUSION OF RADIO FREQUENCY</u> <u>INTERFERENCE EMISSIONS TESTS:</u>

The TFT EP0426/EP0359 Relay Interface was measured for its conducted emissions per EN61000-6-3 for DC operated devices. After measuring and improving the system the Cispr B objective was achieved after adding the changes shown in the summary at the beginning of this report.

SHEET 1 CSPR11B CONDUCTED PEAK REPORT Low Lead

CISPR 11 - Limits of RFI for Indust., Sci & Med. Eqmt., Level B


TIME: 13:51:00 Midwest EMI DATE: 11-28-2009 Associates TEST ITEM: TFT EP0426/EP359/10uF Add

SERIAL NUMBER: Y5920 Relay Bd, Y5740 CAN Sequence Number: 049 COMMENTS: On table 40cm from wall, 13.7 VDC Supply, Proto 1 Y5920

TEST PERFORMED BY: George Bowman

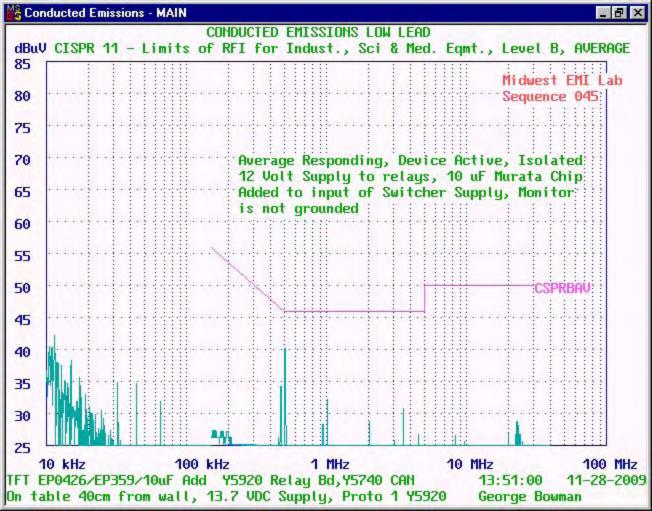
Freq Level Interfer. Level Spec. Level (kHz) (dBm) (dBuV) (dBuV)

210.7	-60.0	66.2 *	63.2
410.9	-70.0	56.3	57.6
442 -72.	.0	54.2	57.0
25070	-67.0	58.7	60.0
26994	-67.0	58.8	60.0
317.10	-70.0	56.2	59.8
8409	-85.0	40.6	60.0
19978	-71.0	54.8	60.0
20361	-70.0	55.8	60.0
28437	-72.0	53.9	60.0
28437	-72.0	0.0	60.0

SHEET 1 CSPR11B CONDUCTED QUASI-PEAK REPORT High Lead

CISPR 11 - Limits of RFI for Indust., Sci & Med. Eqmt., Level B

TIME: 13:51:00 Midwest EMI DATE: 11-28-2009 Associates TEST ITEM: TFT EP0426/EP359/10uF Add


SERIAL NUMBER: Y5920 Relay Bd,Y5740 CAN Sequence Number: 053

COMMENTS: On table 40cm from wall, 13.7 VDC Supply, Proto 1 Y5920

TEST PERFORMED BY: George Bowman

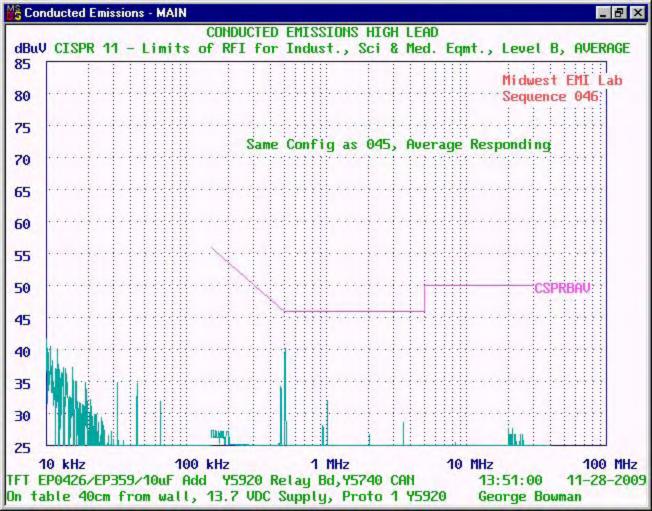
Peak	Peak	Quasi-peak	Quasi-peak	Spec.
Freq.	Interfer.	Freq.	Interfer.	Level
(kHz)	(dBuV)	(kHz)	(dBuV)	(dBuV)

285.6	59.52	277.2	35.8 1	60.65
300.6	59.52	288.18	35.52	60.23
327	58.94	330.24	31.75	59.53
386.4	58.59	385.5	31.79	58.14
402	59.00	397.92	31.80	57.81
414	58.59	406.74	31.79	57.57
427.8	57.98	417.24	31.88	57.30

SHEET 1 CSPRBAV CONDUCTED PEAK REPORT Low Lead

CISPR 11 - Limits of RFI for Indust., Sci & Med. Eqmt., Level B, AVERAGE

TIME: 13:51:00 Midwest EMI DATE: 11-28-2009 Associates TEST ITEM: TFT EP0426/EP359/10uF Add


SERIAL NUMBER: Y5920 Relay Bd, Y5740 CAN Sequence Number: 045

COMMENTS: On table 40cm from wall, 13.7 VDC Supply, Proto 1 Y5920

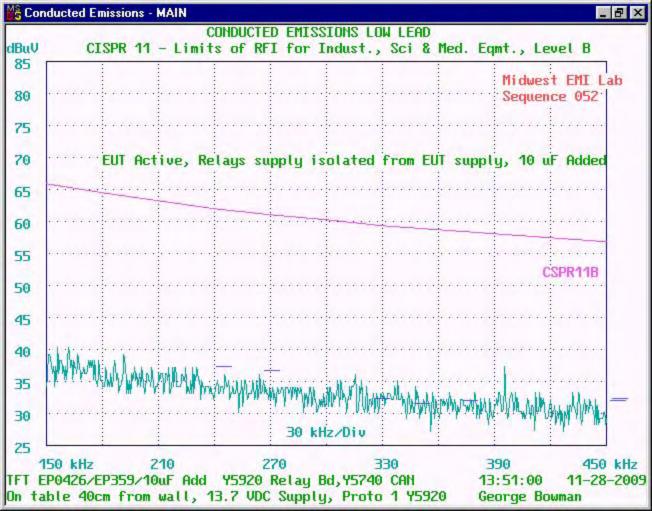
TEST PERFORMED BY: George Bowman

Freq Level Interfer. Level Spec. Level (kHz) (dBm) (dBuV) (dBuV)

509	-86.0	40.1	46.0
8313	-99.0	26.6	50.0
19257	-103.0	22.8	50.0
22906	-97.0	28.7	50.0
29940	-105.0	21.0	50.0
29940	-105.0	0.0	50.0

SHEET 1 CSPRBAV CONDUCTED PEAK REPORT
High Lead
CISPR 11 - Limits of RFI for Indust., Sci & Med. Eqmt., Level B, AVERAGE

TIME: 13:51:00 Midwest EMI DATE: 11-28-2009 Associates TEST ITEM: TFT EP0426/EP359/10uF Add


SERIAL NUMBER: Y5920 Relay Bd,Y5740 CAN Sequence Number: 046

COMMENTS: On table 40cm from wall, 13.7 VDC Supply, Proto 1 Y5920

TEST PERFORMED BY: George Bowman

Freq Level Interfer. Level Spec. Level (kHz) (dBm) (dBuV)

509	-86.0	40.2	46.0
8329	-100.0	25.5	50.0
18194	-102.0	23.7	50.0
20058	-98.0	27.7	50.0
27034	-105.0	20.7	50.0
27034	-105.0	0.0	50.0

SHEET 1 CSPR11B CONDUCTED QUASI-PEAK REPORT LOW Lead

CISPR 11 - Limits of RFI for Indust., Sci & Med. Eqmt., Level B ME: 13:51:00 Midwest EMI

TIME: 13:51:00 Midwest EMI DATE: 11-28-2009 Associates TEST ITEM: TFT EP0426/EP359/10uF Add

SERIAL NUMBER: Y5920 Relay Bd, Y5740 CAN Sequence Number: 052

COMMENTS: On table 40cm from wall, 13.7 VDC Supply, Proto 1 Y5920

TEST PERFORMED BY: George Bowman

Peak Freq.	Peak Interfer.	Quasi-peak Freq.	Quasi-peak Interfer.	Spec. Level
(kHz)	(dBuV)	(kHz)	(dBuV)	(dBuV)

241.8	59.46	245.16	37.45	62.03
247.2	59.45	245.88	37.45	61.85
277.2	59.43	270.9	36.74	60.90
341.4	58.20	330	32.38	59.17
347.4	58.51	351.12	31.72	59.02
378	58.56	376.74	32.06	58.32
443.4	58.22	456.78	32.09	57.00
448.2	57.21	457.8	32,49	56.91

APPENDIX B1

FCC/VDE RADIATED EMISSIONS TEST

(EN55011, EN55022, EN55014)

1.0 PURPOSE:

The purpose of this test sequence is to perform compliance testing to FCC Part 15, VDE 0871, CISPR 11 and 22 and other tests that can be run on a 3 meter indoor test site or in a screen room.

2.0 INDOOR TEST FACILITY DESCRIPTION:

The indoor test site is situated inside a 3000 sq. ft. building located at Midwest EMI Associates, 21234 W. Commercial Drive, Mundelein Illinois. This site has flat plane above which is situated multiple 1/2" thick 4 x 8 foot wood panels with double-sided galvanized steel plates comprising an overall dimension of approximately 24 by 32 feet. The plates are interconnected by "top hat" grounding connections that is further grounded by connection to the main power ground into the earth satisfying ANSI requirements. These tests require that the antenna be raised and lowered over a 1 to 4 meter distance on an antenna mast such that the radials clear obstructions by at least 1 meter. The size of the site will accommodate three-meter Cispr measurements. All objects are clear of the ellipse defined in ANSI for a three-meter site. The antenna mast is the C.C. Moore Company automated mast assembly Model DAPM4/6 and the antenna turntable is the C.C. Moore Company automated turntable Model DTT-4.

3.0 CONFIGURATION AND OPERATION OF TEST SAMPLE:

3.1 POWER REQUIREMENT:

The TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359) was operated in its normal mode using a 12 VDC lead acid battery for power.

3.2 GROUNDING:

Any possible alternate ground provided for the test sample was interrupted by the wooden table upon which the sample was placed and which situates the test sample 80 cm. above the floor of the lab area.

The EMC receiver, a Tektronix 2712, is located outside the screen room and is grounded with a two inch copper strap at the rear of the instrument and a 2 AWG welding cable at the front of the instrument.

3.3 RADIATED CONFIGURATION:

In radiated tests, the test sample was oriented so that the area exhibiting the greatest amount of radiation was facing the antenna.

All measurements were performed using the peak and quasi peak reading capability of the Tek 2712.

3.4 TEST SAMPLE OPERATION:

All test measurements were made with the unit in its normal measuring mode after a 3-minute power up period. The EUT was pumping at its maximum rate during this test.

3.5 TEST PROCEDURES/LIMITS OF ACCEPTANCE:

The general procedures are dictated in the individual protocols listed such as ANSI 63.4, FCC Part 15, CISPR 11, and CISPR 22. The limits for FCC rules presently are given in Part 15.109 of 47 CFR 1 (10-9-1990) Edition of the Federal Code of Regulations. The antenna used is the Antenna Research LPB 2520 Biconilog antenna in both its horizontal and vertical modes for 5-meter compliance tests.

VDE LIMITS (ELECTRIC FIELDS - CISPR 11)

Above 30 MHz the limit is written at 30 meters. From 30 MHz to 230 MHz the "A" level allowed is 30 uV/m, and 37 dBuV/m) from 230 MHz to 1000 MHz. Since the specification is written at 30 meters the extrapolated allowed values to 3 meters are 50 dBuV/m and 57 dBuV/m respectively. If this requirement is passed and the Cispr 11 B level limit is not passed then the following warning is recommended to be included in the instructions for use:

This (Equipment and/or System) is suitable for use in all establishments other than domestic and those directly connected to the low voltage power supply network that supplies buildings used for domestic purposes.

Sale of devices is not restricted when this warning is included in the instructions.

For CISPR 11 B level, the allowed radiated emissions are measured at a 10 meters distance. The allowed levels are 30 dBuV/m from 30 to 230 MHz, and from 230 to 1000 MHz the level is 37 dBuV/m. The levels have been linearly extrapolated on the graphs to 5 meters, which reflects a 6 dB increase.

Hereinafter, the equipment under test will be referred to as the E.U.T. All radiated tests above 30 MHz are made with horizontal and vertical polarizations where applicable.

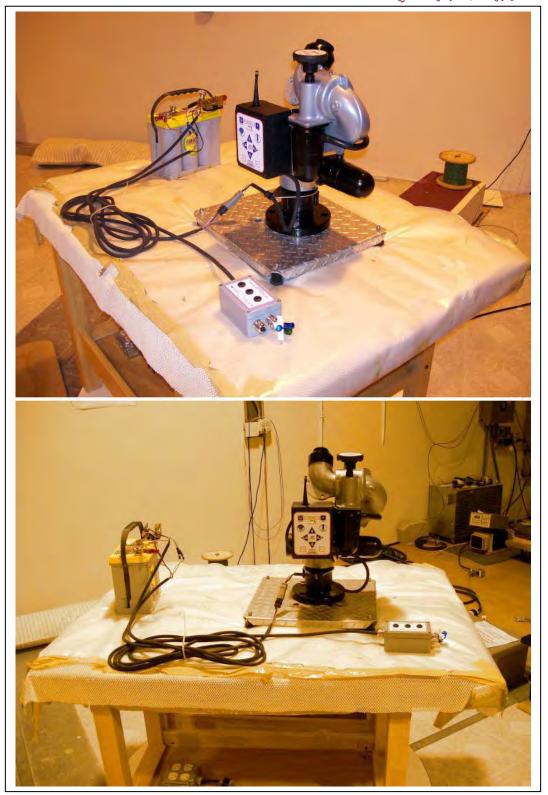
4.0 <u>CONCLUSION OF RADIO FREQENCY INTERFERENCE</u> <u>EMISSIONS TESTS:</u>

Preliminary Test

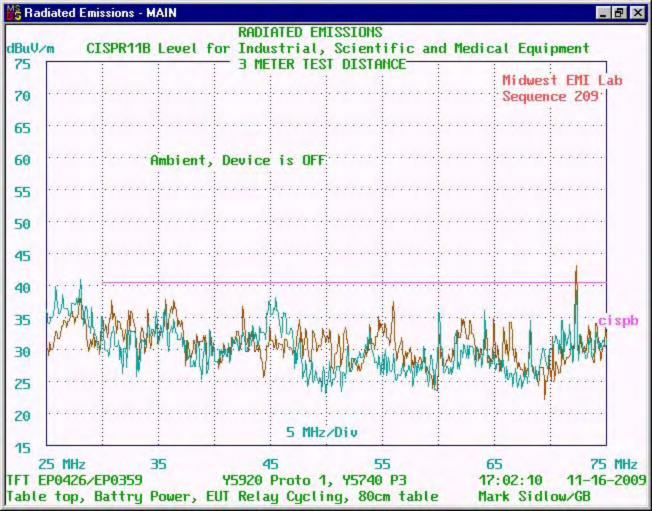
The device was oriented with the front of the EUT facing the antenna initially. The unit was varied in position and antenna height with a 1 meter antenna height found typically to be worst case. The orientation of the unit was typically with the control box and valve facing front at 0 degrees wrt the antenna.

Final Testing – 11-16-09

Seq. 209 shows the ambient; Seq. 212 shows the quasipeak mode in comparison in the range of 20-75 MHz. All emissions were checked with one at 72 MHz found to be from the ambient, all others found to be in compliance as confirmed by the quasipeak measurement. Tabular data is shown at the end of the graphical data.


In the 75-170 MHz range, Seq. 214 shows the ambient and Seq. 215/221 show the quasipeak emissions. Ambient emissions consist of the FM band and the intentional radiators at 152-158 and 162 MHz. Emissions above the line in the mid band area were discovered to be sporadic airplane emissions. No other emissions from the EUT appeared to be above the line.

In the 160-300 MHz range, the ambient is shown on Seq. 211 and quasipeak level on Seq. 213. No areas of emission from the EUT appeared to exceed the limit. Other emissions seen were from TV Channels 7 and 11, and a common carrier at about 220 MHz.


In the 300-640 MHz, the ambient is shown on Seq. 219 and the peak level emissions are shown on Seq 216 Other high emissions are numerous UHF TV stations and they are identified. Two emissions found in this range different from the ambient were individually inspected and not found to be due to the EUT but were from limo taxi services.

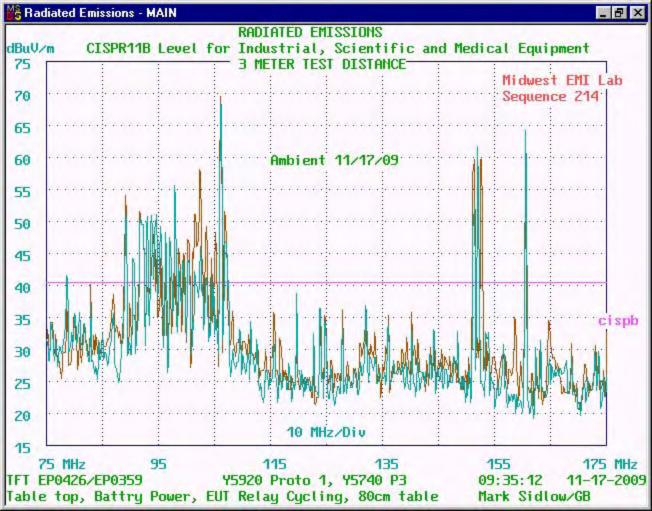
In the 620-1000 MHz, the ambient is shown on Seq. 220 and qpeak level on Seq. 217. Other high emissions are numerous UHF TV stations and the cell telephone band around 900 MHz that is identified. When the graphs were overlaid, no excess level introduced by the EUT was seen.

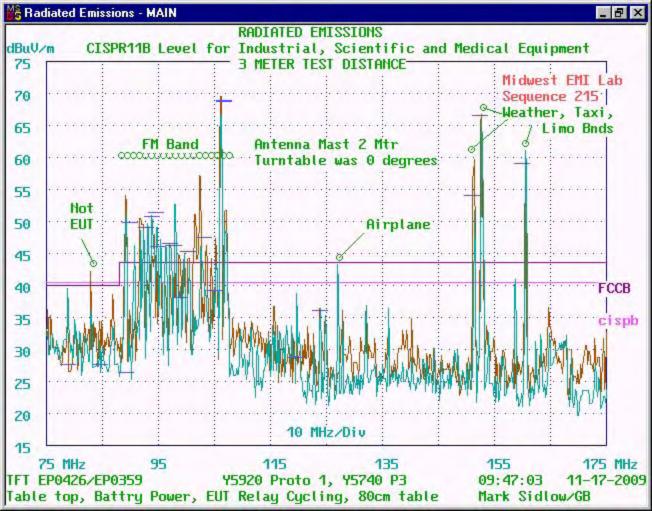
The TFT Interface Controller was found to be fully compliant with the Cispr 11 B level specification. The actual battery used for this test was a large 12 volt lead acid battery that was attached to the battery terminals by clip leads.

Radiated Emissions Test Configuration

SHEET 1 **CISPB RADIATED QUASI-PEAK REPORT** CISPR11B Level for Industrial, Scientific and Medical Equipment **3 METER TEST DISTANCE**

TIME: 17:02:10 Midwest EMI **DATE: 11-16-2009 Associates**


TEST ITEM: TFT EP0426/EP0359


SERIAL NUMBER: Y5920 Proto 1, Y5740 P3 Sequence Number: 212

COMMENTS: Table top, Battry Power, EUT Relay Cycling, 80cm table TEST PERFORMED BY: Mark Sidlow/GB

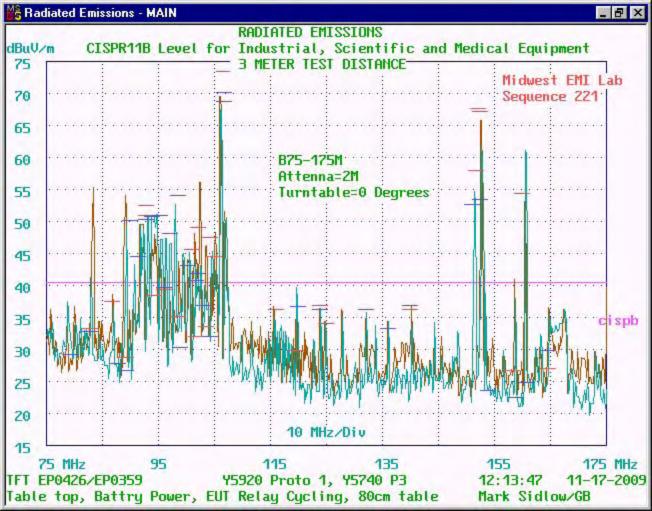
Peak	Peak (Quasi-peak	Quasi-peak		Antenna
Frequency		Freq.	Interfer.	Level	Polarization
(MHz)	(dBuV/m)	(MHz)	(dBuV/m)	(dBuV/m) (H/V)
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	$\Delta\Delta\Delta\Delta\Delta\Delta\Delta$	$\Delta \Delta $		$\triangle \triangle \triangle \triangle \triangle$	

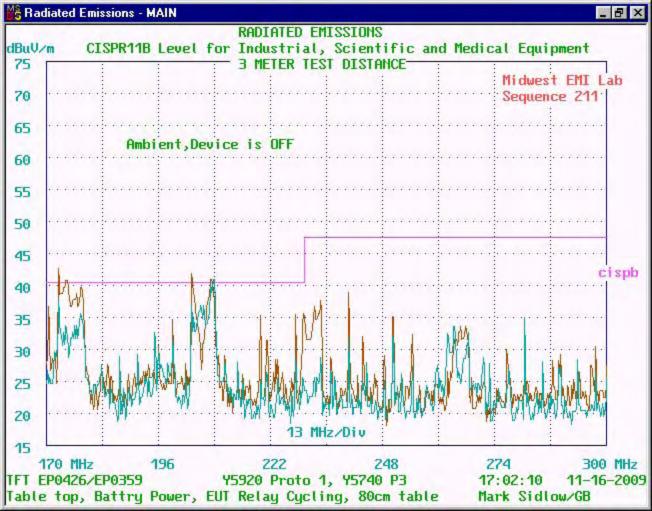
30.8	36.73	30.7112	29.37	40.50	Horizontal	
32.41443	38.30	32.6016	28.10	40.50	Horizontal	
36.05248	36.75	36.1701	33.06	40.50	Horizontal	
36.63266	38.02	36.8303	37.96	40.50	Horizontal	
39.68472	35.54	39.6071	27.04	40.50	Horizontal	
47.64956	37.41	47.8144	31.06	40.50	Horizontal	
55.8428	34.99	56.0252	34.50	40.50	Horizontal	
60.05807	35.08	60.0069	31.08	40.50	Horizontal	
62.04636	35.88	62.232	32.27	40.50	Horizontal	
66.09278	33.30	66.2256	30.54	40.50	Horizontal	
66.34310	33.47	66.2431	29.93	40.50	Horizontal	
70.92650	42.91	71.1065	25.33	40.50	Horizontal	
72.88355	44.01	72.89879	25.37	40.50	Horizontal	
35.13554	38.03	35.3355	30.49	40.50	Vertical	
35.60222	37.27	35.4038	29.48	40.50	Vertical	
39.41962	34.74	39.6012	34.74	40.50	Vertical	
45.60241	39.56	45.6248	37.17	40.50	Vertical	
45.52082	38.87	45.5824	35.10	40.50	Vertical	
43.57852	35.47	43.6025	31.86	40.50	Vertical	
48.1373	33.94	47.9605	24.47	40.50	Vertical	
55.89389	33.99	55.9931	34.52	40.50	Vertical	
59.91551	36.28	60.0067	33.68	40.50	Vertical	
61.4088	33.73	61.4568	32.75	40.50	Vertical	
63.92408	30.82	64.01130	33.65	40.50	Vertical	
63.92272	36.12	64.0115	34.15	40.50	Vertical	
65.75955	33.94	65.6564	25.06	40.50	Vertical	
68.05943	37.93	68.005	35.36	40.50	Vertical	
70.922	34.66	70.8604	29.39	40.50	Vertical	
71.20519	34.58	71.0548	29.50	40.50	Vertical	
72.01791	39.81	72.01390	37.41	40.50	Vertical	

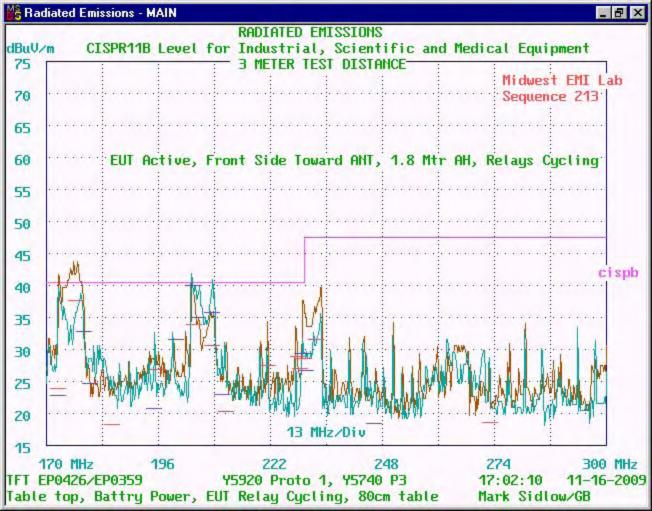
SHEET 1 cispb RADIATED QUASI-PEAK REPORT CISPR11B Level for Industrial, Scientific and Medical Equipment 3 METER TEST DISTANCE

TIME: 09:47:03 Midwest EMI DATE: 11-17-2009 Associates

TEST ITEM: TFT EP0426/EP0359


SERIAL NUMBER: Y5920 Proto 1, Y5740 P3 Sequence Number: 215


COMMENTS: Table top, Battry Power, EUT Relay Cycling, 80cm table


TEST PERFORMED BY: Mark Sidlow/GB

Peak Peak Quasi-peak Quasi-peak Spec. Antenna Frequency Interfer. Freq. Interfer. Level Polarization (MHz) (dBuV/m) (MHz) (dBuV/m) (dBuV/m) (H/V)

44.14	78.7664	27.74	40.50	Vertical
51.77	84.5385	27.78	40.50	Vertical
52.11	89.1224	26.44	40.50	Vertical
47.87	90.15860	49.92	40.50 *	Vertical
51.64	92.7025	49.08	40.50 *	Vertical
52.08	93.93519	50.91	40.50 *	Vertical
51.13	94.724	51.45	40.50 *	Vertical
49.37	95.1412	46.12	40.50 *	Vertical
48.95	97.0792	46.57	40.50 *	Vertical
54.74	97.9272	46.32	40.50 *	Vertical
46.65	98.86109	38.13	40.50	Vertical
45.67	100.284	45.44	40.50 *	Vertical
49.01	103.1068	47.53	40.50 *	Vertical
46.13	105.132	39.32	40.50	Vertical
67.91	106.7416	68.81	40.50 *	Vertical
50.52	106.6696	69.00	40.50 *	Vertical
42.75	119.4881	28.76	40.50	Vertical
41.81	124.0138	36.20	40.50	Vertical
52.80	151.0424	54.11	40.50 *	Vertical
65.31	152.3293	66.60	40.50 *	Vertical
44.17	159.9935	59.20	40.50 *	Vertical
61.74	159.9775	59.20	40.50 *	Vertical
	51.77 52.11 47.87 51.64 52.08 51.13 49.37 48.95 54.74 46.65 45.67 49.01 46.13 67.91 50.52 42.75 41.81 52.80 65.31 44.17	51.77 84.5385 52.11 89.1224 47.87 90.15860 51.64 92.7025 52.08 93.93519 51.13 94.724 49.37 95.1412 48.95 97.0792 54.74 97.9272 46.65 98.86109 45.67 100.284 49.01 103.1068 46.13 105.132 67.91 106.7416 50.52 106.6696 42.75 119.4881 41.81 124.0138 52.80 151.0424 65.31 152.3293 44.17 159.9935	51.77 84.5385 27.78 52.11 89.1224 26.44 47.87 90.15860 49.92 51.64 92.7025 49.08 52.08 93.93519 50.91 51.13 94.724 51.45 49.37 95.1412 46.12 48.95 97.0792 46.57 54.74 97.9272 46.32 46.65 98.86109 38.13 45.67 100.284 45.44 49.01 103.1068 47.53 46.13 105.132 39.32 67.91 106.7416 68.81 50.52 106.6696 69.00 42.75 119.4881 28.76 41.81 124.0138 36.20 52.80 151.0424 54.11 65.31 152.3293 66.60 44.17 159.9935 59.20	51.77 84.5385 27.78 40.50 52.11 89.1224 26.44 40.50 47.87 90.15860 49.92 40.50 * 51.64 92.7025 49.08 40.50 * 52.08 93.93519 50.91 40.50 * 51.13 94.724 51.45 40.50 * 49.37 95.1412 46.12 40.50 * 48.95 97.0792 46.57 40.50 * 54.74 97.9272 46.32 40.50 * 46.65 98.86109 38.13 40.50 45.67 100.284 45.44 40.50 * 49.01 103.1068 47.53 40.50 * 46.13 105.132 39.32 40.50 * 67.91 106.7416 68.81 40.50 * 50.52 106.6696 69.00 40.50 * 42.75 119.4881 28.76 40.50 41.81 124.0138 36.20 40.50 52.80 151.0424 54.11 40.50 * 65.31 152.3293 66.60 40.50 *

SHEET 1 **CISPB RADIATED QUASI-PEAK REPORT** CISPR11B Level for Industrial, Scientific and Medical Equipment **3 METER TEST DISTANCE**

Midwest EMI TIME: 17:02:10 DATE: 11-16-2009 **Associates**

40.86

40.95

42.12

34.58

38.07

208.5

246.4

210.7944

229.5101

230.5218

TEST ITEM: TI SERIAL NUMB COMMENTS: 1 TEST PERFOR	ER: Y592(Table top,	Proto 1, Y Battry Pow	er, EUT Rela	Seque y Cycling	nce Number: 21 g, 80cm table
Peak Frequency (MHz)	Peak Interfer. (dBuV/m)	Quasi-peak Freq. (MHz)	Quasi-peak Interfer. (dBuV/m)	Spec. Level (dBuV/m	
173.1	42.26	172.908	23.95	40.50	Horizontal
176.8599	44.43	176.7727	37.74	40.50	Horizontal
185.428	32.54	185.2376	18.35	40.50	Horizontal
195.8328	32.87	195.9976	26.88	40.50	Horizontal
204.7307	41.81	204.5859	34.04	40.50	Horizontal
208.2	36.25	208.3704	30.65	40.50	Horizontal
211.6	30.65	211.6816	20.45	40.50	Horizontal
221.2672	33.54	221.4664	27.55	40.50	Horizontal
228.4665	33.33	228.4873	29.05	40.50	Horizontal
228.8	51.36	228.7984	27.16	40.50	Horizontal
230.2717	37.58	230.1125	28.70	47.50	Horizontal
232.8193	38.11	232.8217	31.68	47.50	Horizontal
273.2238	39.23	273.0566	18.72	47.50	Horizontal
172.9	39.95	172.8136	22.95	40.50	Vertical
178.6015	39.29	178.7463	32.86	40.50	Vertical
180.4	33.00	180.2104	24.81	40.50	Vertical
195.4327	32.95	195.2503	20.85	40.50	Vertical
199.9922	33.31	200.013	31.60	40.50	Vertical
204.1965	41.77	204.3253	40.13	40.50	Vertical
205.1901	42.81	205.1885	35.06	40.50	Vertical

208.7008

210.7152

229.6253

230.3994

246.2072

35.86

23.12

29.39

26.81

18.57

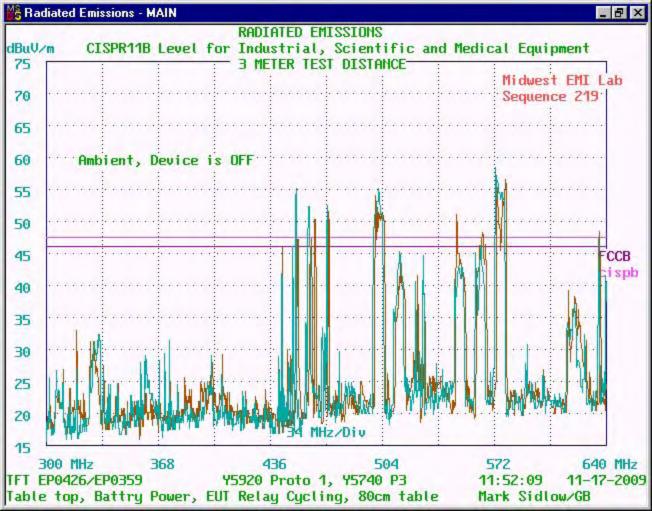
40.50

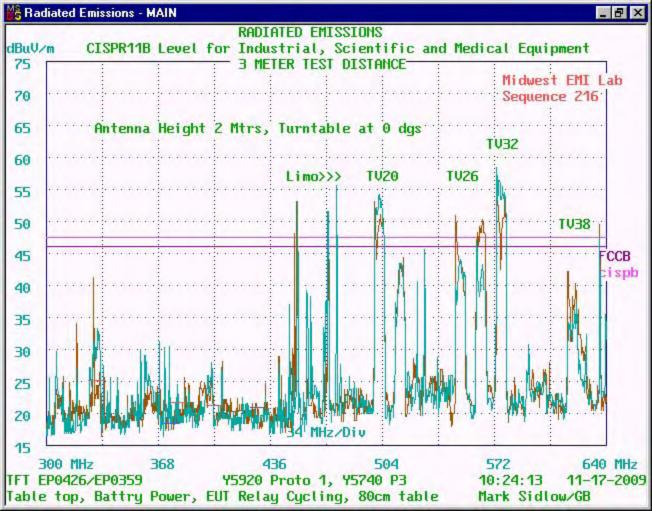
40.50

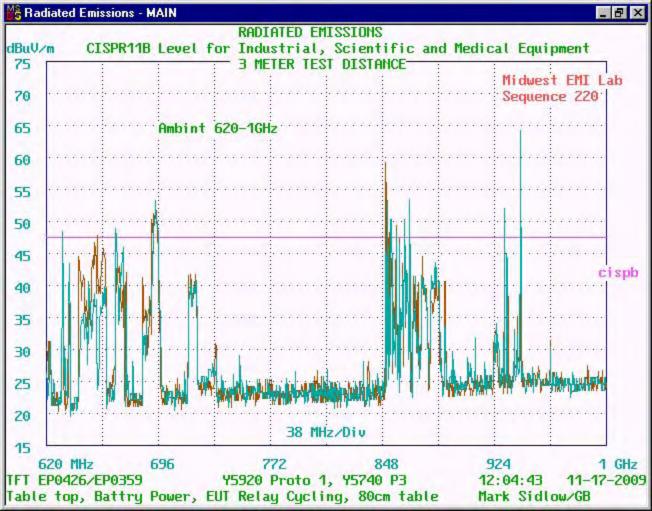
40.50

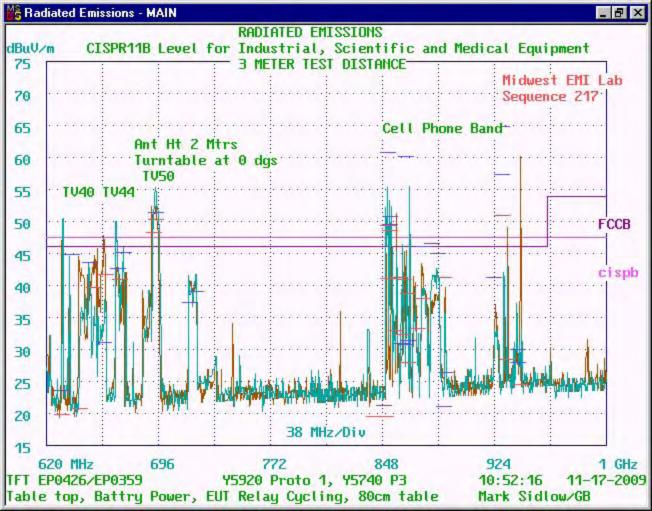
47.50

47.50


Vertical


Vertical


Vertical


Vertical

Vertical

SHEET 1 cispb RADIATED QUASI-PEAK REPORT CISPR11B Level for Industrial, Scientific and Medical Equipment 3 METER TEST DISTANCE

TIME: 10:52:16 Midwest EMI Associates

TEST ITEM: TFT EP0426/EP0359

SERIAL NUMBER: Y5920 Proto 1, Y5740 P3 Sequence Number: 217 COMMENTS: Table top, Battry Power, EUT Relay Cycling, 80cm table

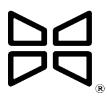
TEST PERFORMED BY: Mark Sidlow/GB

Peak Peak Quasi-peak Quasi-peak Spec. Antenna Frequency Interfer. Freq. Interfer. Level Polarization (MHz) (dBuV/m) (MHz) (dBuV/m) (dBuV/m) (H/V)

630.8	49.19	630.652	19.99	47.50	Horizontal
642.6217	48.76	642.4625	20.87	47.50	Horizontal
652.5291	47.51	652.6228	39.72	47.50	Horizontal
660.2625	48.62	660.4249	41.84	47.50	Horizontal
669.5567	47.43	669.7575	40.98	47.50	Horizontal
692.8755	54.88	692.7459	48.41	47.50 *	Horizontal
694.3114	56.02	694.4162	50.43	47.50 *	Horizontal
842.4	44.66	842.2927	19.66	47.50	Horizontal
850.4	47.15	850.2024	19.54	47.50	Horizontal
851.6	55.36	851.6736	49.46	47.50 *	Horizontal
852.4668	54.07	852.466	41.17	47.50	Horizontal
854	49.88	853.9880	48.68	47.50 *	Horizontal
857.2	51.72	857.3976	33.12	47.50	Horizontal
859.2	52.54	859.0656	41.34	47.50	Horizontal
861.6	45.77	861.6192	32.37	47.50	Horizontal
863.2472	52.58	863.444	40.98	47.50	Horizontal
864.8002	47.29	864.9986	38.90	47.50	Horizontal
866.4	51.82	866.2016	28.11	47.50	Horizontal
872	48.07	871.8016	33.37	47.50	Horizontal
875.9838	48.70	875.7895	38.01	47.50	Horizontal
890.6794	44.26	890.5634	41.36	47.50	Horizontal
929.6186	53.25	929.6018	51.05	47.50 *	Horizontal
932.8	43.38	932.8784	28.58	47.50	Horizontal
941.3432	61.75	941.4064	24.66	47.50	Horizontal
631.2	54.50	631.2872	23.70	47.50	Vertical
637.7304	46.86	637.7472	45.00	47.50	Vertical
650.3899	45.86	650.3243	43.69	47.50	Vertical
659.7527	43.73	659.6023	31.23	47.50	Vertical
668.7597	53.74	668.5621	42.76	47.50	Vertical
672.7329	47.71	672,9209	45.22	47.50	Vertical
694.8111	56.61	694.6310	51.53	47.50 *	Vertical
717.4585	44.23	717.3280	37.44	47.50	Vertical
721.2	44.30	721.3336	39.20	47.50	Vertical
850	53.54	849.9648	21.34	47.50	Vertical
852.5409	58.16	852.4921	60.87	47.50 *	Vertical
853.9009	53.07	853.9849	50.88	47.50 *	Vertical
854	54.08	853.9768	49.58	47.50 *	Vertical
861.6	50.17	861.4088	30.96	47.50	Vertical
864.0112	53.38	863.952	60.19	47.50 *	Vertical
864.4	49.80	864.2	30.89	47.50	Vertical
866.4	55.52	866.2016	31.51	47.50	Vertical

CISPB RADIATED QUASI-PEAK REPORT SHEET 2 CISPR11B Level for Industrial, Scientific and Medical Equipment **3 METER TEST DISTANCE**

TIME: 10:52:16 Midwest EMI DATE: 11-17-2009 **Associates**


TEST ITEM: TFT EP0426/EP0359

SERIAL NUMBER: Y5920 Proto 1, Y5740 P3 Seauence Number: 217

COMMENTS: Table top, Battry Power, EUT Relay Cycling, 80cm table TEST PERFORMED BY: Mark Sidlow/GB

Peak	Peak (Juasi-neak	Quasi-peak	Spec	Antenna
Frequency	interfer.	Frea.	Interfer.	Level	Polarization
(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m	A /H/M
(141172)	(UBUV/III)	(WINZ)	(UBUV/III)	(UDUY/II	I) (M/V)
$\Delta \Delta $	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	$\wedge \wedge \wedge \wedge \wedge \wedge \wedge$	$\wedge \wedge \wedge \wedge \wedge \wedge \wedge$	$\wedge \wedge \wedge \wedge \wedge$	$\Delta \Delta $

876.0771	44.40	876.1708	46.22	47.50	Vertical
882.361	46.17	882.2114	46.68	47.50	Vertical
886	45.82	885.8008	45.02	47.50	Vertical
889.7587	40.26	889.7603	21.16	47.50	Vertical
892	38.98	891.9592	26.48	47.50	Vertical
924.4874	38.30	924.457	41.30	47.50	Vertical
929.63	56.75	929.6324	64.85	47.50 *	Vertical
929.6165	46.67	929.6198	57.45	47.50 *	Vertical
939.5584	42.83	939.7264	30.04	47.50	Vertical
939.8031	65.85	939.7287	28.04	47.50	Vertical

APPENDIX C

ELECTRICAL FAST TRANSIENT/BURST TEST

(EN 61000-4-4, First Edition, 1995 and successors)

1.0 PURPOSE:

The purpose of this test is to insure that commercial or medical devices will not be susceptible to electrical spikes or transients applied to their input AC or DC leads. This investigation evaluated the immunity of the EUT to controlled fast, low energy transients on the power or peripheral cable input lines. The burst duration is typically 15 ms and the repetition rate of the salvo of pulses is about 300 ms for commercial equipment. The applicable standard is the European IEC 61000-4-4 regimen.

2.0 <u>DESCRIPTION OF TEST APPARATUS:</u>

The test apparatus for this test consists of the Haefely P90.1 (Article 093 204.1), S/N 083 485-32 with attendant cables and Cable Adapter 093 506.1 S/N 083 593-14. The general configuration of the test unit is described in the following test report.

3.0 TEST PROCEDURES:

3.1 POWER LEADS:

Application of the EFT generator to the EUT was performed with the power input cable routed vertically, from the EFT/B generator to the EUT. Power of 120 VAC/ 60- Hz was applied through the line and neutral leads of the EFT generator that included an internal coupler/decoupler mechanism. The power leads were less than one meter per standard. If longer ones are supplied by the manufacturer the excess is gathered into a flat coil with a .4 meter diameter and situated at a distance of .1 meter above the ground reference plane.

3.2 POLARITY and TEST LEVELS:

The electrical fast transient/burst was applied for the following modes of operation:

- 1) Line with respect to the GRP (Ground Reference Plane)
- 2) Neutral with respect to the GRP
- 3) Line and Neutral with respect to the GRP
- 4) Protective Earth with respect to the GRP
- 5) Line and Protective Earth with respect to the GRP
- 6) Neutral and Protective Earth with respect to the GRP
- 7) Neutral, Line and Protective Earth with respect to the GRP

Tests were performed for the following EFT/B voltage levels, repetition rates, period and duration, for asynchronous triggering with respect to the AC line input:

LEVEL	OPEN CIRCUIT OUTPUT TEST VOLTAGE	REPETITION RATE	BURST DURATION	BURST PERIOD
1	.5 KV	5.0 KHZ	15 MSEC	300 MSEC
2	1 KV	5.0 KHZ	15 MSEC	300 MSEC
3	2 KV	5.0 KHZ	15 MSEC	300 MSEC
4	4 KV	2.5 KHZ	15 MSEC	300 MSEC

The test duration of each test, at each voltage level, for each mode of operation, for positive and negative polarities was 2 minutes.

3.3 EFT GENERATOR CHARACTERISTICS:

Per standard and generator specifications the following are the EFT characteristics:

Maximum energy: 4 mJ/pulse at 2KV into 50 ohm load

Polarity: Positive/Negative

Output type: Coaxial (Cable Clamp Operation)

Dynamic source impedance: 50 ohms +/- 20% /1-100 MHz

DC blocking capacitor: 10 NF Repetition frequency: variable

Rise time of one pulse: 5 ns +/- 30 %Impulse Duration: 50 ns +/- 30%

Power source synchronism condition: Asynchronous

Burst Duration: 15 ms +/- 20% Burst Period: 300 ms +/- 20%

3.4 COUPLING DECOUPLING NETWORK CHARACTERISTICS:

Frequency Range: 1 to 100 MHz Coupling Capacitors: 33 NF

Decoupling attenuation in the non-symmetrical condition: >20dB

Cross talk attenuation in network between lines: >30 dB Insulation withstand of coupling capacitors: 5 kV (1.2/50uS)

3.5 COUPLING CLAMP CHARACTERISTICS:

Typical coupling capacitance: 50-200 puff Usable diameter range of round cables: 4-40 mm

Insulation withstand voltage: 5 KV

3.6 GROUND REFERENCE PLANE:

The ground reference plane is greater than 1x1 meter and allows at least 10 cm of excess dimension beyond the longest dimension of the EUT. The EUT is put on a wooden support approximately 80 cm. above the ground reference plane. A very short strap of negligible inductance (#2 AWG braided cable) and resistance couples the EFT to the GRP. All other structures that were conductive were at least .5 meter from the EUT per standard.

3.7 REFERENCE DOCUMENT:

The reference document that defines the scope of the investigation, specific details, acceptability of test methods and results, techniques and construction details, as required, may be found in:

EN 61000-4-4, Second Edition, 2004 entitled "Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test- Section 4: Electrical fast transient/burst immunity test, Basic EMC Publication" and successors

3.8 ACCEPTABILITY CRITERION:

The following criterion was established to determine the compliance of the EUT to the test regimen:


An unacceptable operating response to the stimulus was:

- 1) Any variation in a displayed character on a front panel display
- 2) Any permanent cessation of communication or adverse effect noticeable as a result of the application of EFT pulses
- 3) Any response of any kind that required an operator intervention to reset or recontrol the device to resume normal operation
- 4) Damage to the EUT such that it would be rendered inoperable or operate outside the manufacturer's specifications

A small variation in light intensity of a display or a small variation in a displayed operating parameter in response to the applied stimulus is considered acceptable if it is within the normal operating tolerances of the instrument.

4.0 TEST RESULTS

The TFT EP0426/EP0359 was tested at .5, 1 KV and 2 KV using the Haefely Clamp on the battery and RS485 lines feeding the main control box. There were no adverse results detected at .5, 1 or 2KV when applied directly to the power line input. It was also tested on peripheral lines to the EP0426 at .5 and 1 KV using the Haefely clamp with no noticeable change in operation. The TFT EP0426/EP0359 passed the EN 61000-4-4 regimen.

Page 22 of 41

Midwest EMI Associates 21234 West Commercial Drive Mundelein, Illinois 60060

IEC Publication Number 61000-4-4, Part 4, 2nd Edition, 2004 British Standard 61000-4-4, Part 4, 2nd Edition, 2004 Section 4. Electrical Fast Transient/Burst Immunity Test

EQUIPMENT UNDER TEST: Y5920 RELAY BI	DATE OF TEST:	11/16/09
MODEL #:	SERIAL #: 472	246
EMPERATURE: 664 HUMI	IDITY LEVEL: 39.9	90
APPLIED BURST LEVEL: ,5 KILOVOLT (TEST SEVERITY REPETITION FREQUENCY: 5 KILOHERTZ AC AL BURST DURATION: 5 MSEC BURST DURATION: 20 SECONDS POWER INPUT: (120 VAC / 60 Hz) (230VAC / 50 Hz) (230VAC / 50 Hz)	DAPTER TYPE: (TWO) (T T PERIOD: 300 MSEC	
MODE OF APPEARANCE	PLUS OBSER\	ATIONS MINUS
LINE WITH RESPECT TO THE GRP	1/	
NEUTRAL WITH RESPECT TO THE GRP		
PE WITH RESPECT TO THE GRP		
LINE AND NEUTRAL WITH RESPECT TO THE GRP	· V	1/
		1 ,/
LINE AND PE WITH RESPECT TO THE GRP		
NEUTRAL AND PE WITH RESPECT TO THE GRP	$\overline{\nu}$	10
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP	CATES DEVICE MALEUNCTIC	L L
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: SURST DURATION: I 5 MSEC BURST DURATION: I 20 SECONDS	Level 2) R TYPE: (WO) (THREE) T PERIOD: 300 Msec	TERMINAL
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPTE	Level 2) R TYPE: (WO) (THREE) T PERIOD: 300 Msec	TERMINAL
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: SURST DURATION: I 5 MSEC BURST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) NSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR BATTERY VOLTAGE	TERMINAL
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPTE BURST DURATION: I 5 MSEC BURS EST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) NSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR BATTERY VOLTAGE	TERMINAL) _/4v
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: SURST DURATION: I 5 MSEC BURST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) NSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR BATTERY VOLTAGE	TERMINAL) _/4v
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPTE BURST DURATION: I 5 MSEC BURS EST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) NSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR BATTERY VOLTAGE	TERMINAL) _/4v
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: MUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPTE BURST DURATION: I 5 MSEC BURST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) NSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR BATTERY VOLTAGE	TERMINAL) _/4v
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDICATED BURST LEVEL: NEPPLIED BURST LEVEL: NEPPLI	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR SATTERY VOLTAGE PLUS OBSERV	TERMINAL) _/4v
NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP FAILURE MODE WAS: JUNE JUNE JUNE JUNE JUNE JUNE JUNE JUN	LEVEL 2) R TYPE: (WO) (THREE) T PERIOD: 300 MSEC OR SATTERY VOLTAGE PLUS OBSERV	TERMINAL) _/4v

Midwest EMI Associates 21234 West Commercial Drive Mundelein, Illinois 60060

Ø

IEC Publication Number 61000-4-4, Part 4, 2nd Edition, 2004 British Standard 61000-4-4, Part 4, 2nd Edition, 2004 Section 4. Electrical Fast Transient/Burst Immunity Test

EQUIPMENT UNDER TEST: 15920 RELAY BI		OF TEST: _//	16/09	
MODEL #:			-	
TEMPERATURE: Hu				
APPLIED BURST LEVEL: A KILOVOLT (TEST SEVERIT REPETITION FREQUENCY: 5 KILOHERTZ AC A BURST DURATION: 15 MSEC BURTEST DURATION: 120 SECONDS POWER INPUT: (120 VAC / 60 Hz) (230VAC / 50 INSTRUMENT SETUP/NOMINAL CONDITIONS:	NDAPTER TYPE: (ST PERIOD: 300			
MODE OF APPEARANCE	PLUS	OBSERVATI	ONS MINUS	.
LINE WITH RESPECT TO THE GRP	~		V	-
NEUTRAL WITH RESPECT TO THE GRP	~		<u>. </u>	
PE WITH RESPECT TO THE GRP	V	**************************************	<u></u>	
LINE AND NEUTRAL WITH RESPECT TO THE GRP	-		<u>_</u>	
	<i>L</i>			_
LINE AND PE WITH RESPECT TO THE GRP	<i>L</i>		L	
	<u></u>		<i>V</i>	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP			ا ا ا	· · · · · · · · · · · · · · · · · · ·
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: I KILOVOLT (TEST SEVERITY REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPT	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300	(THREE) TER	RMINAL	***
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300	(THREE) TER	RMINAL	,
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: REPETITION FREQUENCY: SKILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300	(THREE) TER	RMINALV	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "1" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: APPLIED BURST LEVEL: I KILOVOLT (TEST SEVERITY REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300) OR BATTERY V	(THREE) TEF MSEC /OLTAGE:	RMINALV	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: REPETITION FREQUENCY: SKILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300) OR BATTERY V	(THREE) TEF MSEC /OLTAGE:	RMINALV	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "1" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: APPLIED BURST LEVEL: I KILOVOLT (TEST SEVERITY REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300) OR BATTERY V	(THREE) TEF MSEC /OLTAGE:	RMINALV	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: REPETITION FREQUENCY: SKILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300) OR BATTERY V	(THREE) TEF MSEC /OLTAGE:	RMINALV	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "1" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: REPETITION FREQUENCY: SKILOHERTZ AC ADAPT BURST DURATION: 15 MSEC BUR TEST DURATION: 120 SECONDS POWER INPUT: (120 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP PE WITH RESPECT TO THE GRP	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300) OR BATTERY V	(THREE) TEF MSEC /OLTAGE:	RMINALV	
LINE AND PE WITH RESPECT TO THE GRP NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP * FAILURE MODE WAS: NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * IND APPLIED BURST LEVEL: REPETITION FREQUENCY: SKILOHERTZ AC ADAPT BURST DURATION: I 5 MSEC BUR TEST DURATION: I 20 SECONDS POWER INPUT: (I 20 VAC / 60 Hz) (230VAC / 50 Hz) INSTRUMENT SETUP/NOMINAL CONDITIONS: MODE OF APPEARANCE LINE WITH RESPECT TO THE GRP PE WITH RESPECT TO THE GRP LINE AND NEUTRAL WITH RESPECT TO THE GRP	LEVEL 2) ER TYPE: (TWO) ST PERIOD: 300) OR BATTERY V	(THREE) TEF MSEC /OLTAGE:	RMINALV	


Midwest EMI Associates 21234 West Commercial Drive Mundelein, Illinois 60060

IEC Publication Number 1000-4-4, Part 4, First Edition, 1995 British Standard 61000-4-4, Part 4, First Edition, 2000 Section 4. Electrical Fast Transient/Burst Immunity Test

MANUFACTURER: TASK FORCE TIPS	TEST ENGINEER II	NITIALS: GB
EQUIPMENT UNDER TEST: 15920 RELAY		•
MODEL #:	SERIAL #:	46
TEMPERATURE: 664 H	JMIDITY LEVEL: 39.90	70
HAEFELY C	CLAMP TEST	
THIS TEST UITILIZES AN APPLICATION CLAMP THAT IS NOT F CABLE BUNDLE IS PLACED INSIDE THE HAEFELY CLAMP AN ACTION OF THE CAPACITIVE CLAMP. THIS TEST IS USED OF SITUATIONS WHERE USE OF THE TRADITIONAL APPARATUS I	D EFT IMPULSES ARE APPLIED I CABLE BUNDLES LONGER TH	TO THE CABLE VIA THE
APPLIED BURST LEVEL: AS LISTED BELOW REPETITION FREQUENCY: 5 KILOHERTZ AC BURST DURATION: 15 Msec BUI TEST DURATION: 120 SECONDS OR: POWER INPUT: (120 VAC / 60 Hz) (230VAC / 5	RST PERIOD: 300 Msec MINUTES O Hz) (480VAC/50Hz/3	PHASE) OR : 14
INSTRUMENT SETUP/NOMINAL CONDITIONS:	ling norma	lly-
VOLTAGE OF APPLICATION		ATIONS PLUS
VOLTAGE OF APPLICATION		
VOLTAGE OF APPLICATION .5 KILOVOLT		
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT		
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT		
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT 4 KILOVOLT		
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT 4 KILOVOLT KILOVOLT		
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT 4 KILOVOLT KILOVOLT KILOVOLT		
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT KILOVOLT KILOVOLT KILOVOLT KILOVOLT KILOVOLT FAILURE MODE WAS:	MINUS OBSERV	VATIONS PLUS
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT KILOVOLT KILOVOLT KILOVOLT KILOVOLT KILOVOLT	MINUS OBSERV	VATIONS PLUS
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT KILOVOLT KILOVOLT KILOVOLT KILOVOLT FAILURE MODE WAS: RESULTS OF .5 KV TEST: RESULTS OF 1 KV TEST: Make	MINUS OBSERV	VATIONS PLUS
VOLTAGE OF APPLICATION .5 KILOVOLT I KILOVOLT 2 KILOVOLT KILOVOLT KILOVOLT KILOVOLT KILOVOLT * FAILURE MODE WAS: RESULTS OF .5 KV TEST: RESULTS OF 2 KV TEST:	MINUS OBSERV	VATIONS PLUS

NUMBER " I " INDICATES NO FAILURE WAS OBSERVED, * INDICATES DEVICE MALFUNCTIONED

Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

APPENDIX D

RADIATED RADIO FREQUENCY INTERFERENCE SUSCEPTIBILITY TEST

(EN 61000-4-3, EN 1000-4-3, RS03 and successors)

1.0 PURPOSE:

The purpose of this test is to insure that commercial devices will not be susceptible to radiated electric fields. The frequency range tested is 30 MHz to 1 GHz nominally or higher for specific tests. The applicable standards are EN 61000-4-3, EN 1000-4-3 and Military Standard 461C Part 4, RS03 test.

2.0 <u>DESCRIPTION OF TEST APPARATUS:</u>

For this test, the TEK2756P Spectrum Analyzer may be used as a monitoring device with a biconical or conical antenna, and the Amplifier Research FM1000/FP1000 receiving system (optically isolated interface) is used for sensing purposes The two FP1000 and one FP2031 RF field probes are linked by an optical fiber cable outside the screen room for the purpose of closed loop control. The field is created using one of three different antennas with an amplifier such as the Model 2100L (lowband), ENI Model 525LA (midband), or Eaton Model 15100B (highband). The IEC test in two bands covers 27 MHz to 1000 MHz however the actual test range covered was 30 MHz to 1 GHz.

3.0 TEST PROCEDURES:

3.1 POWER LEADS & CABLE PLACEMENT:

The TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359) was powered by a 12 VDC lead acid battery.

3.2 TEST SETUP:

The E.U.T. was placed on top of a nonconducting table at a .8 meter height. A closed circuit camera was positioned in front of the pressure monitor to check for variations in speed or pressure in the tube. Three isotropic probes (See picture at end of appendices) were placed in close proximity to the sides of the unit. The EUT was exposed to an elevated RF input level on one face which was the rear face of the unit. To accommodate EN 61000-4-3 as much as possible the antennas were adjusted to a 2 meter distance from the sample.

The computer program automatically cycles the isotropic probe through X, Y and Z polarizations, takes readings from three isotropic probes, averages the probe field strengths and applies correction to maintain the field strength at the sponsor group's requested value. This is done by turning off the modulation while the probe is being measured and then turning the modulation on for a variable amount of time. This permits accurate field strength measurement even though the modulation rate is low. In this case the modulation was turned on for 6 seconds per point.

3.3 MODULATION:

The modulation applied externally to the Wavetek 2520A was a 1000 Hz sinusoid which was used to generate an 80% AM signal which is consistent with EN 61000-4-3.

3.4 ANTENNAS AND AMPLIFIERS:

The radiating antennas/amplifiers used during the test were:

- a) The EMCO Model 3107B Power E field antenna from 10 KHz to 50 MHz, horizontal polarization only,
- b) The Antenna Research LPB 2520 Biconilog antenna from 50 MHz-1000 MHz, horizontal and vertical polarization,
- c) Power amplifiers were used to drive all antennas. In the low band test (where applicable), the 100 Watt ENI Model 2100L was used from 10 KHz- 12 MHz. In the mid-band test that can range from 1-520 MHz or 12-520 MHz, a 25 Watt linear ENI model 525LA was used. From 500 1000 MHz a 15 watt linear amplifier Eaton Model 15100B was used.
- d) Sweep rate of amplifiers was adjusted so that the rate did not exceed 1.5 x 10⁻³ decades/second and the step size never exceeded the 1% change limit of EN 61000-4-3. The rate was adjusted to approximately 100-1000 KHz per step every 3 seconds and the sweep was continuous between steps. Polarization was horizontal and vertical when the Biconilog was used.

4.0 LIMITS AND RESULTS OF TEST:

4.1 RADIATED LIMITS:

The radiated susceptibility immunity should not be lower than 3 or 10 V/M as prescribed by EN 61000-4-3. The IEC range is 80 MHz to 1000 MHz. A graph is shown of the actual averaged field strength presented to the prototype during the test.

4.2 **RESULTS OF TEST:**

The TFT EP0426/EP0359 was exposed to a 10 V/M immunity wave from 30 to 1000 MHz with 1000 Hz, 80% modulation. It was also exposed to the same field in the 900 to 925 MHz cellular phone test using 200 Hz, 100% square wave modulation. It was also tested from 1000-2700 MHz at user selected bands without noticeable problems.

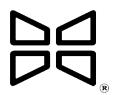
During testing the system was continuously monitored for correct functioning so that a) the light sequences from the relays were in the proper order and 2) the system did not pause in its control of the lights. The device passed the EN 61000-4-3 radiated immunity regimen.

Radiated Immunity Test

Page 26 of 41

Midwest EMI Associates Radiated Immunity Worksheet Page of ____

					Ref: Radiated Immunity Master Sheet.doc
Date: ///	18/09	Report: 295	6	Test Engine	eer: (George Bowman) (Phil Rajca) (Tester: M.5)
Item Tested:	TFT E	P0426/EP0	359	Model	BIV · VUM SIN:
Project:					TPS Power: 12 V (AC)(DC), Hz
Test Perfor	med:	Probes: (CS1	14) (Fisch	er CDN)	Modulation: (2) (10) (100) (1000) Hz, Sine Wave
(Radiated)	(Conducted)	(A/R FP2031)	(AR FP 2	(036)	(Cell Phone Test, 200 Hz 100% AM Square Wave)
(Magnetic)	(CS114)	(AR FP1000)	Other:		
	:(HP8756A)	Orientation: (-		
(Wavetek 2		(Wooden Tab			The state of the s
					3107B, L=EMCO 3147, CDN=Fischer CDN, CLMP=Bulk Cable Clamp
Frequency (M=MHz)	Increment Frequency	Immunity Level:	Dwell Time:	Antenna Type:	Results: (Include any Failure Modes Observed in the EUT),
(K=KHz)	(KHz)	(V)(V/M)	(Sec)	B,C,L	Video Camera System Used: (Yes) (No)
30	10/0	10.	8	B	START HORZONTAL SWEEP 30-500
500					BND HORZONTAL
30					START VERTICAL SWEEP 30-500
500					BND VERTICAL
		-			
)		
Notes:			*	•	



Midwest EMI Associates Radiated Immunity Worksheet

D	C
Page	of
1 450	01

	4				Ref: Rudiated Immunity Master Sheet doc
Date:	19/09	Report: 29	56	Test Engine	er: _(George Bowman) (Phil Rajca) (Tester:
Item Tested:	TET	EPOTAG/EF	0359	Model	BIV-VOM S/N:
Project:		Group:	TASK 1	FORCE T	
Test Perfor	med:	Probes: (CS)			Modulation: (2) (10) (100) (1000) Hz, Sine Wave
	(Conducted)	(A/R FP2031)			(Cell Phone Test, 200 Hz 100% AM Square Wave)
(Magnetic)		(AR FP1000)	***************************************	(0.1	
	:(HP8756A)	Orientation: (
(Wavetek 2					3107B, L=EMCO 3147, CDN=Fischer CDN, CLMP=Bulk Cable Clamp
Frequency (M=MHz) (K=KHz)	Increment Frequency (KHz)	Immunity Level: (V)(V/M)	Dwell Time: (Sec)	Antenna Type: B,C,L	Results: (Include any Failure Modes Observed in the EUT), Video Camera System Used: (Yes) (No)
500	10/0	10	8	B	START HORZONTAL SWEEP SOO-1000
1000					END HORZONTAL
500					START VERTICAL SWEEP 500-1000
1000					BNO VBRTICAL
1000					START HORZONTAL SWIZEP 1000-2200
2200					END HORZONTAL
1000					START VERTICAL SWEEP 1000-2200
2200					IZND HOREGITAL VIZRTICAL
2200					START HORROWTAL SWEEP 2200-2500
2500					BNO HORZONTAL
2200					START VERTICAL SWEEP 2200-2500
2500					BND VBRTICAL

Notes:			

APPENDIX E

ELECTRICAL SURGE IMMUNITY TEST

(IEC 61000-4-5, First Edition, 1995 and successors)

1.0 PURPOSE:

The purpose of this test is to insure that commercial or medical devices will not be susceptible to electrical surges applied to their input AC or DC leads. This investigation evaluated the immunity of the EUT to controlled high-energy transients on the power or peripheral cable input lines. The open circuit voltage ranges from .2 to 4.2 kV with a 1.2 / 50 us waveshape and the short circuit current ranges up to 2.1 kA with an 8 / 20 uS waveshape. The surge simulates lightning pulses in the proximity of the mains supplying power to the EUT. The applicable standard is the European EN 61000-4-5 regimen.

2.0 <u>DESCRIPTION OF TEST APPARATUS:</u>

The test apparatus for this test consists of the Haefely Psurge 4010 with attendant cables and adapters. The general configuration of the test unit is described in the following test report.

3.0 TEST PROCEDURES:

3.1 POWER LEADS:

Application of the surge generator to the EUT was performed with the power input cable routed horizontally, from the surge generator to the EUT. Power was applied through the line and neutral leads of the surge generator that included an internal coupler/decoupler mechanism. The power leads were less than two meters as required. If longer ones are supplied by the manufacturer and are not detachable the excess is gathered into a flat coil with a .4 meter diameter and situated at a distance of .1 meter above the ground reference plane. Where an IEC connector is used a < 2 meter cable is supplied.

3.2 POLARITY and TEST LEVELS:

The surge wave was applied in the following modes of operation:

- 1) Line with respect to the Protective Earth
- 2) Neutral with respect to the Protective Earth
- 3) Between Line and Neutral with respect to the GRP

Tests were performed for the following surge voltage levels, repetition rates, period and duration, for synchronous triggering with respect to the AC line input:

LEVEL	OPEN CIRCUIT	REPETITION	Pulse	Mode Supplied
	OUTPUT TEST	RATE	Synchronism	
	VOLTAGE	of Pulse	(Degrees)	
1	.5 KV	30 Sec	0,90,180,270	1,2,3
2	1 KV	30 Sec	0,90,180,270	1,2,3
3	2 KV	45 Sec	0,90,180,270	1,2

3.3 SURGE GENERATOR CHARACTERISTICS:

Per standard and generator specifications the following are the surge characteristics:

Open Circuit Voltage: Programmable .2 to 4.2 KV, 1.2 / 50 uS

Short Circuit Current: up to 2.1 Kilo Amperes

Polarity: Positive/Negative

Repetition Rate: up to 6 impulses/Minute at Umax or 12 at 2.2 KV/Min.

Max EUT current: 16 amps Repetition frequency: variable Electronic Overcurrent: 0-16 Amps

Impulse Measurement Accuracy: Voltage and Current +/- 3%

3.4 COUPLING DECOUPLING NETWORK CHARACTERISTICS:

Coupling Capacitors: 18 uF

3.5 QUALITY:

Meets the design and manufacturing requirements of ISO 9001

3.6 GROUND REFERENCE PLANE:

The ground reference plane is greater than 1x1 meter and allows at least 10 cm of excess dimension beyond the longest dimension of the EUT. The EUT is put on a wooden support approximately 10 cm. above the ground reference plane. In alternate configurations the EUT may be placed on a table adjacent to the 1x1 meter plane and above a 3 meter plane of the radiated emission test site.

3.7 REFERENCE DOCUMENT:

The reference document that defines the scope of the investigation, specific details, acceptability of test methods and results, techniques and construction details, as required, may be found in:

IEC 61000-4-5, First Edition, 1995 entitled "Electromagnetic Compatibility, Part 4: Testing and Measurement Techniques - Section 4: Electrical fast transient/burst immunity test, Basic EMC Publication" and succeeding revisions.

3.8 ACCEPTABILITY CRITERION:

The following criterion was established to determine the compliance of the EUT to the test regimen:

An unacceptable operating response to the stimulus was:

- 1) Any permanent variation in a displayed image
- 2) Any permanent variation in the normal operation of the device or permanent changes to the EUT.
- 3) Any response of any kind that required an operator intervention to reset or recontrol the device to resume normal operation.
- 4) Damage to the EUT such that it would be rendered inoperable or operate outside the manufacturer's specifications.

A small variation in light intensity of a display or a small variation in a displayed operating parameter in response to the applied stimulus is considered acceptable if it is within the normal operating tolerances of the instrument.

4.0 SURGE IMMUNITY TEST RESULTS:

The TFT EP0426/EP0359 was tested on its DC leads in line to line mode at a 500 volt application in positive and negative polarities. The EUT experienced no anomalies with this application and passed the test.

Haefely Trench AG EMC Test Systems Basel/Switzerland

TEST PROTOCOL

* System: PSURGE 4010 * Test: P5KL1NPS

Start-Date: 16.11.2009 Start-Time: 15:47

****** Combination Wave 1,2/50us;8/20us *************

*	****	Comi	ornation wave	e 1,2/50	ous;8/20us	^ ^ ^ ^ ^ ^		^ *
*	Coup.	Imp	. U nom-	Syncro				*
*	Path	No.	inal	Angle	U-peak	I-peak	Info.	*
*					0-pear	pear		*
*	L1-N	1	+0.50kV		+0.09kV	+218A		*
*	L1-N	2	+0.50kV		+0.09kV	+218A		*
*	L1-N	3	+0.50kV		+0.09kV	+218A		*
*	L1-N	4	+0.50kV		+0.09kV	+218A		*
*	L1-N	5	+0.50kV		+0.09kV	+218A		*
*	L1-N	6	+0.50kV		+0.09kV	+218A		*
*	L1-N	7	+0.50kV		+0.09kV	+218A		*
*	L1-N	8	+0.50kV		+0.09kV	+218A		*
*	L1-N	9	+0.50kV		+0.09kV	+218A		*
*	L1-N	10	+0.50kV		+0.09kV	+218A		*
*	L1-N	11	+0.50kV		+0.09kV	+218A		*
*	L1-N	12	+0.50kV		+0.09kV	+219A		*
*	L1-N	13	+0.50kV		+0.09kV	+219A		*
*	L1-N	14	+0.50kV		+0.09kV	+218A		*
*	L1-N	15	+0.50kV		+0.09kV	+219A		*
*	L1-N	16	+0.50kV		+0.09kV	+218A		*
*	L1-N	17	+0.50kV		+0.09kV	+218A		*
*	L1-N	18	+0.50kV		+0.09kV	+218A		*
*	L1-N	19	+0.50kV		+0.09kV	+218A		*
*	L1-N	20	+0.50kV		+0.09kV	+218A		*
*	L1-N	21	+0.50kV	-	+0.09kV	+218A		*
*	L1-N	22	+0.50kV		+0.09kV	+218A		*
*	L1-N	23	+0.50kV		+0.09kV	+218A		*
*	L1-N	24	+0.50kV		+0.09kV	+219A		*
*	L1-N	25	+0.50kV		+0.09kV	+218A		*
*	L1-N	26	+0.50kV		+0.09kV	+218A		*
*	L1-N	27	+0.50kV		+0.09kV	+218A		*
*	L1-N	28	+0.50kV		+0.09kV	+218A		*
*	L1-N	29	+0.50kV		+0.09kV	+218A		*
*	L1-N	30	+0.50kV		+0.09kV	+218A		*
*	L1-N	31	+0.50kV		+0.09kV	+218A		*
*	L1-N	32	+0.50kV		+0.09kV	+218A		*
*	L1-N	33	+0.50kV		+0.09kV	+218A		
	L1-N	34	+0.50kV		+0.09kV	+218A		*
*	L1-N	35	+0.50kV		+0.09kV	+218A		*
*	L1-N	36	+0.50kV		+0.09kV	+218A		*
*	L1-N	37	+0.50kV		+0.09kV	+218A		*
*	L1-N	38	+0.50kV		+0.09kV	+218A		*
*	L1-N L1-N	39 40	+0.50kV +0.50kV		+0.09kV +0.09kV	+218A		*
*			passed. <<<		+0.0367	+218A		*
*	<i>>>></i>	1696	passeu. <<<					*
*	Test:		P5KL1NPS					*
*	Stop-I)ata.	16.11.200	a		Stop-Tim	ne: 15:53	*
Ĵ	acob-r	Jace:	10.11.200	J		acob-111	TO:22	, T

·

Haefely Trench AG EMC Test Systems Basel/Switzerland *

TEST PROTOCOL

* System: PSURGE 4010 * Test: P5KL1NPS

Start-Date: 16.11.2009 Start-Time: 16:08 *

* Coup. Imp. U nom- Syncro * Path No. inal Angle U-peak I-peak Info * L1-N 1 -0.50kV0.09kV -217A * L1-N 2 -0.50kV0.09kV -217A * L1-N 3 -0.50kV0.09kV -217A	* *
* Path No. inal Angle U-peak I-peak Info *	. * * *
* L1-N 1 -0.50kV0.09kV -217A * L1-N 2 -0.50kV0.09kV -217A * L1-N 3 -0.50kV0.09kV -217A	* *
* L1-N 1 -0.50kV0.09kV -217A * L1-N 2 -0.50kV0.09kV -217A * L1-N 3 -0.50kV0.09kV -217A	*
* L1-N 2 -0.50kV0.09kV -217A * L1-N 3 -0.50kV0.09kV -217A	
* L1-N 3 -0.50kV0.09kV -217A	*
	*
* L1-N 4 -0.50kV0.09kV -217A	*
* L1-N 5 -0.50kV0.09kV -217A	*
* L1-N 6 -0.50kV0.09kV -217A	*
* L1-N 7 -0.50kV0.09kV -217A	*
* L1-N 8 -0.50kV0.09kV -218A	*
* L1-N 9 -0.50kV0.09kV -217A	*
* L1-N 10 -0.50kV0.09kV -217A	*
* L1-N 11 -0.50kV0.09kV -217A	*
* L1-N 12 -0.50kV0.09kV -217A	*
* L1-N 13 -0.50kV0.09kV -217A	*
* L1-N 14 -0.50kV0.09kV -217A	*
* L1-N 15 -0.50kV0.09kV -217A	*
* L1-N 16 -0.50kV0.09kV -217A	*
* L1-N 17 -0.50kV0.09kV -217A	*
* L1-N 18 -0.50kV0.09kV -217A	*
* L1-N 19 -0.50kV0.09kV -217A	*
* L1-N 20 -0.50kV0.09kV -217A	*
* L1-N 21 -0.50kV0.09kV -217A	*
* L1-N 22 -0.50kV0.09kV -217A	*
* L1-N 23 -0.50kV0.09kV -217A	*
* L1-N 24 -0.50kV0.09kV -217A	*
* L1-N 25 -0.50kV0.09kV -217A	*
* L1-N 26 -0.50kV0.09kV -217A	*
* L1-N 27 -0.50kV0.09kV -217A	*
* L1-N 28 -0.50kV0.09kV -217A	*
* L1-N 29 -0.50kV0.09kV -217A	*
* L1-N 30 -0.50kV0.09kV -217A	*
* L1-N 31 -0.50kV0.09kV -217A	*
* L1-N 32 -0.50kV0.09kV -217A	*
* L1-N 33 -0.50kV0.09kV -217A	*
* L1-N 34 -0.50kV0.09kV -217A	*
* L1-N 35 -0.50kV0.09kV -217A	*
* L1-N 36 -0.50kV0.09kV -217A	*
* L1-N 37 -0.50kV0.09kV -217A	*
* L1-N 38 -0.50kV0.09kV -217A	*
* L1-N 39 -0.50kV0.09kV -217A	*
* L1-N 40 -0.50kV0.09kV -217A	*
<pre>* >>> Test passed. <<< *</pre>	*
* Test: P5KL1NPS	*

Test: P5KL1NPS

Stop-Date: 16.11.2009 Stop-Time: 16:15 *

APPENDIX F

CONDUCTED SUSCEPTIBILITY TEST

Common Mode Voltage Interference (Ref: EN 61000-4-6)

1.0 PURPOSE:

The purpose of this test is to insure that commercial or medical devices will not be susceptible to conducted RF energy when induced on peripheral cabling. The frequency range possible to be tested is 150 KHz-300 MHz. The required range is 150 KHz to 80 MHz. The applicable standard and test method is described in Euronorm standard EN 61000-4-6:2001.

2.0 DESCRIPTION OF TEST APPARATUS:

The test apparatus required is described in the reference includes a signal generator, amplifier, wideband directional coupler, several attenuators, a calibration fixture, a wideband coupling probe, a coaxial load, and two spectrum analyzers. The test also can be run with one spectrum analyzer provided the test is run twice exactly the same way. The test equipment actually used was (in the order above) a Wavetek 2520 generator, one amplifier which is the ENI 525LA (mid band), a Werlatone C1795 directional coupler, Bird Model 8306-200-Nxx 20 Watt power attenuators (3,10, and 20 dB), a Fischer IEC 801-6 CDN FCC-801-M3-25, and a Tektronix 2756P spectrum analyzer.

The test also requires analysis of data using a high speed computer and graphical presentation of data. The computer used was a USA Flex Advanta 50 MHz 486 controller with Quattro Pro for Windows and Word for Windows for tabular presentation. The test requires characterization of all components and a dedicated computer program to cycle the test equipment in a precise manner that induces required common mode currents in the EUT cables.

3.0 TEST PROCEDURES:

3.1 POWER LEADS:

The device tested was plugged into a source of 120VAC, 60Hz through two Line Impedance Stabilization Networks, Solar type 8028-50-TS-24-BNC. The AC cord was made physically as short as possible to permit maximum energy into the E.U.T.

3.2 TEST SETUP:

The test setup complies with the relevant portions of the reference standard. The Wavetek signal generator runs a specific pattern of signal frequencies and amplitudes to cover the range of interest in such a way that the required levels are maintained very closely. The calibration step is performed prior to the EUT portion of the test using a reference load which consists of a 150 ohm to 50 ohm pad and other apparatus to calibrate the levels to 1, 3 and 10 V RMS. The monitor probe used in the test on the EUT was a Solar type 6741-1.

The test was performed inside of the screened room with the EUT on a metal table very close to the CDN which rested on a copper tabletop to provide optimum grounding and the flattest RF level possible to the EUT. The copper table is 80 cm. off the floor of the room.

3.3 MODULATION:

The required 1000 Hz, 80% AM modulation signal was used.

3.4 AMPLIFIERS USED:

The amplifiers used during the test were:

- a) The ENI 2100L from .15 to .3 MHz, 100 Watts
- b) The ENI 525LA from .3 MHz 400MHz, 25 Watts.

3.5 TEST PROCEDURES:

A calibration step is first required to set the levels to be used in the test on the EUT. The Fischer CDN is first arranged with two coupling devices that effectively short the three outputs of the CDN together and also convert the desired 150-ohm impedance to 50 ohms. These special adapters are placed on the AE port and EUT port for terminations. The EUT port was additionally fitted with a 20-dB power pad leading to the spectrum analyzer that acted as a receiver. The power for the RF input of the CDN was generated by the Wavetek signal source through the ENI 525LA power amp along with 15 feet of RG214 cable and terminated in the RF port.

The signal levels were then iteratively adjusted so that the output level would always maintain at least the 3 or 10 V RMS requirement. It is important to note that the standard requires a 3 or 10 V RMS open circuit output into the EUT. For the 10 V RMS case, if a 50 ohm termination is used the true matched level is 5 V RMS. The resistive 150 to 50 ohm matching pad further reduces the level by a factor of 3 for an overall gain reduction of 6 times. This means the output leading to the spectrum analyzer is 1.67 volts (10/6). The addition of the 20 dB pad (to avoid any reflections) further reduces the amplitude to .167 volts which is the flat level that is needed to be maintained over the frequency range.

4.0 <u>LIMITS AND RESULTS OF TEST:</u>

4.1 CONDUCTED LIMITS:

The conducted immunity of the EUT must not be less than the level defined in the reference standard. The possible levels are 1, 3 or 10 V RMS. The dwell time to exercise the functions of the EUT was 3 seconds per point. The total number of points taken was 750 over the 150 KHz to 300 MHz range. The range required to pass for this test is only 150 KHz to 80 MHz. In the higher range of 80-300 MHz the dwell time was also 3 seconds.

4.2 **RESULTS OF TEST**

Testing was performed on the sole cable providing power and communications to the EP0426 peripheral using the Solar 9108-1N/9142-1N injection probes. When the device was initially tested at the minimum 3 V RMS level it performed normally throughout the entire range of frequencies of .15 to 300 MHz. Since this is the required level and just the .15-80 Mhz range needs to be passed the device passed the test.

In a second test the test was rerun in the .15 to 300 MHz range using a 10 V rms level. Again no adverse events were noted, the device continued to exercise a normal routine throughout the test.

The device passed the EN 61000-4-6 requirement at 3 or 10 V RMS in either case without noticeable failures.

Midwest EMI Associates Radiated Immunity Worksheet

Page / of /

Ref: Radiated Immunity Master Sheet, doc

				жу: жиаш	itea Immunuy Master Si	neer.aoc
Date: 11/22/09	Report: 2956 Te	est Engineer:	George Bowma	n) (Phil Rajca)	(Tester:)
Item Tested: TFT E	PO426/680359		5920P1/	S/N:		
Project:	Group: TFT	5	5740 F3 Power:	13.8 V (AC) (D	C) Hz	
Test Performed:	Probes: (CS114) (Fischer CI			Hz, Sine Wave		
(Radiated) (Conducted)	(A/R FP2031) (AR FP 2036)		(Cell Phone Tes	t, 200 Hz 100% A	M Square Wave)	
(Magnetic) (CS114)	(AR FP1000) (Other: Folan	SHAMR	Modulation Dep	th: (50%) (80%)	(%)	
Signal Gen. :(HP8756A)	Orientation: (Pole Stand) (Other	Place of Test:	creenroom) (2)	Mtr Site)		
(Wavetek 2520A))	(Wooden Table) (Copper Table	e)(Floor)	(5 Mtr Site) (O	utdoors) Floor	Position: (A) (B)	(C)

Antennas: B=Biconical EMCO 3109, C=Conical EMCO 3101, E=EMCO3107B, L=EMCO 3147, CDN=Fischer CDN, CLMP=Bulk Cable Clamp Frequency Increment **Immunity** Dwell Antenna Results: (Include any Failure Modes Observed in the EUT), (M=MHz)Frequency Level: Time: Type: Video Camera System Used: (Nes) (No) (K=KHz) (KHz) (M/V)((V) (Sec) B,C,L Rey SOLAR IOOK Por Pan CLAMF 11 11 15 AOK normal take Se 150K 2.5M 1, 2.5 m 1 . 10 11 80m 11 1. 15 01 11 133M 1, 11 9 19819 11 230M 11 11 *1 300 m SOLAR 100K Pom 10 Using 9108-12 29142-12 "1 11 10 11 2.5m quenan " 16 11 11 ri 10m n 28.7M 1 1 11 15 11 11 100m 1 1 10 10 10 17/m 4 n re " Fd 235M " 10 10 16 10 11 300m Finish Test, Passed

Notes:

Watching Sequencing of highto attached to relays

APPENDIX G

ELECTROSTATIC DISCHARGE TEST

(EN 61000-4-2, Protocol MEMI-1)

1.0 PURPOSE:

The purpose of this test is to insure that commercial or medical devices will not be susceptible to electrostatic discharge transients applied to the case and circuitry. The device should show no degradation within 5 seconds of application. This also applies to application of charges to the horizontal and vertical coupling planes. The European directive mandates passing of the 8 kV air discharge in single shot mode and 4 kV contact discharge. The actual test was conducted at up to +/- 8KV air and 4 kV contact discharge.

2.0 DESCRIPTION OF TEST APPARATUS:

The Schaffner NSG 435 electrostatic gun is used. The device under test may be mounted on a table or pole clamp for testing. The gun meets EN 61000-4-2 test standard requirements.

All tests are done with the tip which best simulates a human finger. The modes that are selectable are 1) continuous mode, or 2) single shot mode. The gun also has positive or negative polarity settings.

3.0 TEST PROCEDURES:

3.1 POWER LEADS:

The TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359) was powered by a 12V DC battery.

3.2 TEST SETUP:

The EN 61000-4-2 directive specifies a horizontal and vertical coupling plane for testing packaged devices. The device was tested on the three-meter site and this formed the horizontal-coupling plane. It was placed on an 80-centimeter table above the ground plane.

The ESD gun was handheld and only one location on the ground screen was chosen for discharge that is located below the table. The ESD gun return lead was grounded to a terminal strip and the table that formed the reference earth potential.

3.3 TEST METHOD: Qualification Test (Single Shot Only)

If single shot mode is utilized for qualification tests the operating conditions are the same as shown in paragraph 3.2. At each voltage which may also include the horizontal or vertical coupling plate, the position is struck 20 times at a 1 second succession in minus and plus polarity settings. After each increment of 20 shots, the next preselected point is tested. A recording of the degradations noted is made on the data sheets and supplementary notes are made as to the response of the test sample. Special attention is given to any failure modes that appear to be unsafe.

4.0 **RESULTS OF TEST (11-20-2009)**

The ESD test was conducted on 11 surfaces in areas showing cracks in the package, switches, connectors or screws. The EUT was subjected to ESD intensity levels of 2, 4, 6 and 8 kV in air discharge mode and 2, 4 and 6 kV in contact discharge mode since the EUT displays both a plastic and metal based construction. The following symptoms were noted during the test:

None, the device performed flawlessly during testing.

The device was given an "A" acceptance rating.

ESD TEST LOCATIONS

TFT REMOTE RELAY INTERFACE / CANBUS INTERFACE (EP0426/EP0359)

TEST POINT	Description
1	HCP
2	VCP
3	Monitor Body
4	Top Right Screw
5	Right Metal Connector
6	Left Plug
7	Middle Plug
8	Right Plug
9	Battery Minus Lead
10	Cord (Anywhere)
11	Plastic Around Plugs
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

Note: Photograph of locations are attached

Data Sheet _2_ of _4_

ESD DATA SHEET

Schaffner NSG 435 Gun

Midwest EMI **Associates** Mundelein, Illinois

Form: Issued 11/22/09 MEMI-1A

Sponsor Group: TFT EP0426 Serial Number: <u>EMI Proto</u>

Manager: <u>Tim Miller</u> Temp: <u>66.2°F</u> Hum: <u>56.5%</u> Technician: <u>MS/GB</u> S/W ver.: <u>Test Code</u>

Date of Test: 11/20/09 Time: 9:00 AM EUT: Prototype / Production Unit

Placement of EUT: ESD Table ______ Pole Mount ____ Wood Table ___ FLOOR ___ Grounding: Pole__ Terminal Strip __/_ FLOOR__ 1 Meg to Metal Frame of EUT. __/_

Configuration of EUT: EUT power 12 VDC Bat, Coper Tape w/1M res to ground on housing

Refe	rence:									
		TEST P	OINT:	op Lt Scr	ew	TEST P	TEST POINT:Bot Rt Screw			
EN 61000-4-2		PLUS POLARITY		MINUS POLARITY		PLUS P	OLARITY	MINUS	<u>POLARITY</u>	
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	
1	1									
2	2	(√)	(√)	(√)	(√)	(√)	(√)	(√)	(√)	
3	3									
4	4	(√)	(√)	(√)	(√)	(√)	(√)	(√)	(√)	
5	5									
6	6	(✓)	(✓)	(√)	(√)	(√)	(√)	(√)	(√)	
7	7									
8	8	(✓)		(√)		(√)		(√)		
9	9									
10	10									

Reference:									
		TEST PO	DINT:E	Bot Lt Scre	ew	TEST POINT: Left Connector			
EN 61000-4-2		PLUS POLARITY		MINUS POLARITY		PLUS POLARITY		MINUS POLARITY	
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(√)	(√)	(✓)	(√)	(√)	(√)	(√)	(√)
3	3								
4	4	(√)	(√)	(√)	(√)	(√)	(√)	(√)	(√)
5	5								
6	6	(✓)	(✓)	(√)	(√)	(√)	(√)	(√)	(√)
7	7								
8	8	(✓)		(√)		(√)		(√)	
9	9								
10	10								

Notes:	A Checkmark () means the device passed the 10 shots successfully with a discharge being seen.	Δ
blank ()) means the point was not tested. A Star sign (*) means a failure occurred that is described below	
Notes:	(🗸)_No Errors This Page	

Data Sheet 4_ of 4_

ESD DATA SHEET

Associates Schaffner NSG 435 Gun

Midwest EMI Mundelein, Illinois Form: Issued 11/22/09 MEMI-1A

Sponsor Group: TFT EP0426 Serial Number: <u>EMI Proto</u>

Manager: <u>Tim Miller</u> Temp: <u>66.2°F</u> Hum: <u>56.5%</u> Technician: <u>MS/GB</u> S/W ver.: <u>Test Code</u>

Date of Test: 11/20/09 Time: 9:00 AM EUT: Prototype / Production Unit

Placement of EUT: ESD Table ______ Pole Mount ____ Wood Table ___ FLOOR ___ Grounding: Pole__ Terminal Strip __/_ FLOOR__ 1 Meg to Metal Frame of EUT. __/_

Configuration of EUT: EUT power 12 VDC Bat, Coper Tape w/1M res to ground on housing

Refe	rence:								
			OINT: Batt	tery Minus	s Lead	TEST PO	OINT:(Cord (Anyw	here)
EN 610	EN 61000-4-2		PLUS POLARITY		MINUS POLARITY		PLUS POLARITY		OLARITY
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(√)	(√)	(√)	(√)	(NA)	(NA)	(NA)	(NA)
3	3								
4	4	(√)	(√)	(√)	(√)	(NA)	(NA)	(NA)	(NA)
5	5								
6	6	(✓)	(✓)	(√)	(√)	(NA)	(NA)	(NA)	(NA)
7	7								
8	8	(✓)		(√)		(NA)		(NA)	
9	9								
10	10								

Reference:									
		TEST PO)INT : <u>Pla</u>	stic aroun	<u>d Plugs</u>	TEST POINT: BLANK			
EN 61000-4-2		PLUS POLARITY		MINUS P	OLARITY	PLUS PO		MINUS POLARITY	
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
3	3								
4	4	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
5	5								
6	6	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
7	7								
8	8	(NA)		(NA)		(NA)		(NA)	
9	9								
10	10								

Notes:	A Checkmark (\checkmark) means the device passed the 10 shots successfully with a discharge being seen.	Α
blank ()) means the point was not tested. A Star sign (*) means a failure occurred that is described below	
Notes:	(🗸)_No Errors This Page	

Data Sheet
<u>1</u> of <u>4</u>

ESD DATA SHEET Schaffner NSG 435 Gun

Midwest EMI **Associates** Mundelein, Illinois

Form: Issued 11/22/09 MEMI-1A

Sponsor Group: TFT EP0426 Serial Number: <u>EMI Proto</u>

Manager: <u>Tim Miller</u> Temp: <u>66.2°F</u> Hum: <u>56.5%</u> Technician: <u>MS/GB</u> S/W ver.: <u>Test Code</u>

Date of Test: 11/20/09 Time: 9:00 AM EUT: Prototype / Production Unit

Placement of EUT: ESD Table _____/ Pole Mount ____ Wood Table ___ FLOOR ___ Grounding: Pole__ Terminal Strip __/ FLOOR__ 1 Meg to Metal Frame of EUT. __/_

Configuration of EUT: EUT power 12 VDC Bat, Coper Tape w/1M res to ground on housing

Refer	rence:								
		TEST P	OINT:	HCP		TEST P	TEST POINT:		
EN 61000-4-2		PLUS POLARITY		MINUS POLARITY		PLUS POLARITY		MINUS	POLARITY
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(√)							
3	3								
4	4	(√)							
5	5								
6	6	(\$\$)	(✓)	(√)	(√)	(√)	(√)	(√)	(<u>></u>)
7	7								
8	8	(\$\$)		(√)		(√)		(√)	
9	9								
10	10								

Reference:									
		TEST PO	OINT:N	Monitor Bo	ody	TEST POINT:Top Rt Screw			
EN 61000-4-2		PLUS POLARITY		MINUS POLARITY		PLUS POLARITY		MINUS POLARIT	
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(√)	(√)	(\$\sqrt{)}	(√)	(\$\sqrt{)}	(√)	(√)	(√)
3	3								
4	4	(√)	(√)	(√)	(√)	(√)	(√)	(√)	(√)
5	5								
6	6	(✓)	(✓)	(√)	(√)	(√)	(√)	(√)	(√)
7	7								
8	8	(✓)		(√)		(√)		(√)	
9	9								
10	10								

Notes:	A Checkmark () means the device passed the 10 shots successfully with a discharge being seen.
blank ()	means the point was not tested. A Star sign (*) means a failure occurred that is described below
Notes:	(🗸)_No Errors This Page

Data Sheet _3_ of _4_

ESD DATA SHEET

Schaffner NSG 435 Gun

Midwest EMI **Associates** Mundelein, Illinois

Form: Issued 11/22/09 MEMI-1A

Sponsor Group: TFT EP0426 Serial Number: <u>EMI Proto</u>

Manager: <u>Tim Miller</u> Temp: <u>66.2°F</u> Hum: <u>56.5%</u> Technician: <u>MS/GB</u> S/W ver.: <u>Test Code</u>

Date of Test: 11/20/09 Time: 9:00 AM EUT: Prototype / Production Unit

Placement of EUT: ESD Table _____/ Pole Mount ____ Wood Table ___ FLOOR ___ Grounding: Pole__ Terminal Strip __/ FLOOR__ 1 Meg to Metal Frame of EUT. __/_

Configuration of EUT: EUT power 12 VDC Bat, Coper Tape w/1M res to ground on housing

Refe	rence:								
11010101100.		TEST PO	OINT: Righ	nt Metal C	Connector	TEST POINT:Left Plug			
EN 610	EN 61000-4-2		PLUS POLARITY		MINUS POLARITY		PLUS POLARITY		POLARITY
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(\$\sqrt{)}	(√)	(√)	(√)	(NA)	(NA)	(NA)	(NA)
3	3								
4	4	(\$\sqrt{)}	(√)	(√)	(√)	(NA)	(NA)	(NA)	(NA)
5	5								
6	6	(\$\$)	(✓)	(√)	(√)	(NA)	(NA)	(NA)	(NA)
7	7								
8	8	(\$\$)		(√)		(NA)		(NA)	
9	9								
10	10								

Refer	ence:								
		TEST PO	INT :N	Middle Plug	g	TEST POINT: Right Plug			
EN 61000-4-2		PLUS PO	<u> DLARITY</u>	MINUS POLARITY		PLUS POLARITY		MINUS POLARITY	
REF. LINE	KILO VOLTS	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode	Air D/charge	CONTACT Mode
1	1								
2	2	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
3	3								
4	4	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
5	5								
6	6	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
7	7								
8	8	(NA)		(NA)		(NA)		(NA)	
9	9								
10	10								

Notes:	A Checkmark (\checkmark) means the device passed the 10 shots successfully with a discharge being seen.	Α
blank ()) means the point was not tested. A Star sign (*) means a failure occurred that is described below	
Notes:	(🗸)_No Errors This Page	

Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

APPENDIX H

FDA/EC MAGNETIC SUSCEPTIBILITY TEST

(EN 61000-4-8 Power Line Immunity Test, AAMI DF-39 METHOD)

1.0 PURPOSE:

The purpose of this test is to insure that medical devices will not be susceptible to low frequency magnetic energy. This test is normally conducted only at 50 or 60 Hertz and with very high electromagnetic fields that could be experienced with heavy machinery or MRI machines. These tests are outlined in IEC EN 61000-4-8, FDA document MDS-201-0004 and Military Standard RS101. In the AAMI DF-39 method the frequency range is extended to 500 Hz encompassing all known power frequencies.

2.0 <u>DESCRIPTION OF TEST APPARATUS</u>:

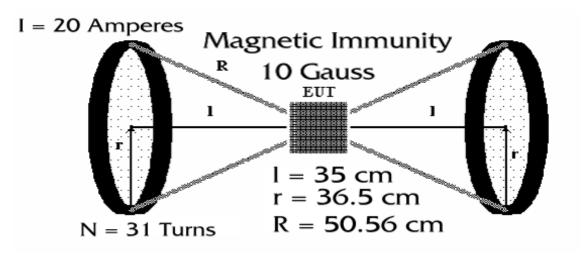
2.1 Test Method and Exceptions

The test method for magnetic field susceptibility of MDS-201-0004 is listed in paragraph 4.3.4 subparagraph a) and specifies the Helmholtz coil must be larger than the maximum dimension of the test sample. In some cases, medical equipment is very large and the coils and power supply needed would be unmanageable from a floor volume and cost standpoint. Instead, as an exception, we use coils that create strong <u>localized</u> fields that are well in excess of the standard. The dimensions of the coils and all calculations are shown in the next section.

In performing the MDS specification at 50/60 Hz for large devices, the coils are held 80 cm apart and they are moved in a parallel plane up and down the device under test. The coils are properly phased with field aiding so that locally over all surfaces the field requirements are met. This is also done in all axes as specified in MDS-201-0004, paragraph 4.3.4.d.

2.2 Loop Antenna Pair

The fabricated antennas for the 50/60 Hz test consist of two bundled coils of average diameter of 73 cm. with 31 turns of #12 AWG insulated, CSA approved standard copper wire. The bundled coil dimension is a 1.5" diameter. The coils are arranged on an axis so that they are parallel to each other and are 70 cm apart.


Using the "right hand" rule, the coils are phased so that the flux generated is aiding. The field generated by the coils is measured by the calibrated Holladay probe. The analysis below correlates the calculated field strength of the coils to the empirically measured field strength. The actual field is approximately twice as great by adding the flux generated by the two coils.

2.3 Calculations

Given: Coil Diameter: 73 cm.
Current: 20 amperes
Coil Distance: 70 centimeters

Number of turns: 31 turns

Units: 1 Tesla = 10^4 Gauss=3 x 10^8 V/m=240 dBpT= 8×10^5 A/M $\mu_0 = .4\pi \times 10^{-7}$ T m/A, 10 Gauss = 800 A/M

Calculate: Field Strength (V/m) at point halfway between the coils.

Let: l = distance from each coil to midpoint, cm
R = distance from midpoint to radius of coil, cm
r = radius of coil, cm

$$R = / \overline{1^2 + r^2} = / \overline{35^2 + 36.5^2} = 50.56 \text{ cm}$$

$$B \text{ (Tesla)} = .5 \ \mu_o * I * \qquad \frac{r^2}{R^3} * N \text{ , } \mu_o = 4 \ \pi \text{ x } 10^{-7} \text{ T x m/A}$$

$$I = 20 \text{ Amps RMS, } 60 \text{ Hz}$$

$$B (V/m) = 188.5 * I * \frac{r^2}{R^3} * N$$
 $N = 25 Turns$ $r = .5 m, R = .6403m$

$$B(V/m) = 188.5 * 20 * (.35)^2 / (.5056)^3 * 31 = 110769 V/m$$

Since two coils are acting the field strength is about two times as great, or 221537 V/m, or equivalently, 227 dBuV/m.

Empirical Finding:

Using a 9311-1 loop antenna between the two coils at the 70 cm. distance and with 20 amperes applied the actual recorded strength was about 10 Gauss or 300000 V/M, 229.5 dBuV/m.

As seen the recorded strength is a few dB higher than calculated and is attributed to mutual inductive coupling between the coils that magnifies the apparent field.

Midwest EMI Associates Test Services Standard Test Report 2956

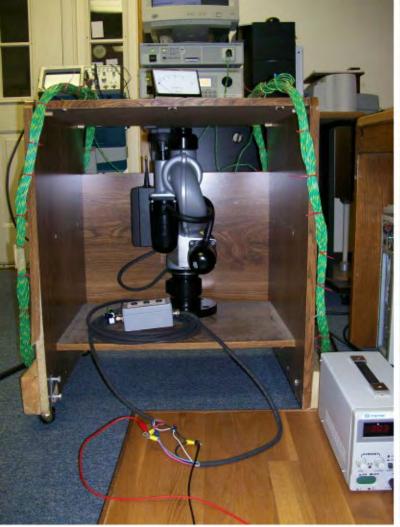
Ref: TFT RELAY INTERFACE EP0426_EP0359.doc

The agreement is quite good and the equivalent empirical magnetic field in tesla at 20 Amps is 1 milli Tesla (10 Gauss, 800 A/M).

2.4 Test Set Up

2.4.1 The device was placed on a wood table at an 80 cm. height and the loop antenna pair was placed in all axes to assure complete exposure of the EUT. The current was adjusted to the maximum obtainable that was 20 amperes, 40-500 Hz.

3.0 MODULATION -- No modulation is specified for this test.


4.0 <u>LIMITS AND TEST RESULTS</u>

4.1 Magnetic Field Limit - MDS-201-0004 & IEC Recommendation


The magnetic field susceptibility of the device should not be less than the level defined in the AAMI DF-39 medical specification (1 Gauss). The IEC recommendation ranges up to 400 amperes/meter. The EN 61326 requirement is 30 A/M.

4.2 **RESULTS**

The TFT EP0426/EP0359 Relay Interface was exposed in three axes to a swept field as measured by Holladay Magnetic Field Probe Model HI-3624. The current was maintained fairly constant at 22 amperes in the range of 40 to 500 Hz resulting in a 10 gauss field being applied in this range. There was no apparent effect on the device due to the 40 Hz to 500 Hz magnetic field. The EUT passed the IEC 61000-4-8 recommendation.

