<section-header><section-header></section-header></section-header>	0			
Midwest EMI Associates, Inc. Electromagnetic Interference Laboratory 21234 W. Commercial Drive Mundelein, Illinois 60060 Tet: (847)-918-986 EN 61000-6-3 EMISSIONS TEST METHOD IMITS Rediated Emissions Rediated Emissions (DC Power Supply) B EN 61000-6-3 Am 1:2007 (Cispr 11) B Conducted Emissions (DC Power Supply) EN 61000-4-2 Cons Ed 1:2:2009 Red colspan="2">A di 8 W Air Discharge A EN 61000-4-3 Ed .30: 2009 Conducted Immunity Test 100 Her, 89% Alt Contact Discharge A EN 61000-4-4 Ed .2: 2: 2009 Conducted Immunity A A 1: Driving testing, normal performance occurs within the specification limits. Everimat		Normative Standard: Test Unit Description and Serial Number: TFT BIV/VUM VALVE C S/N: EMI Prototype Test Report # 2955	EN61000-6-	-2, EN 61000-6-3: 2007
Electromagnetic Interference Laboratory 21234 W. Commercial Drive Mundelein, Illinois 60060 Tei: (847)-918-986 EN 61000-6-3 Am 1:2007 (Cispr 11) Radiated Emissions IEC 61000-6-3 Am 1:2007 (Cispr 11) Radiated Emissions (DC Power Supply) B IEC 61000-6-3 Am 1:2007 (Cispr 11) Conducted Emissions (DC Power Supply) B Electrostatic Discharge Test Vare, 30-2000 100 Hz, 90% AM mediationand 900 Hz, 90% AM mediation				
21234 W. Commercial Drive Mundelein, Illinois 60060 Tel: (847)-918-9886 EN 61000-6-3 EMISSIONS IEN 61000-6-3 Am 1:2007 (Cispr 11) IEN 61000-6-3 Am 1:2007 (Cispr 11) Radiated Emissions IEN 61000-6-3 Am 1:2007 (Cispr 11) IEN 61000-6-3 Am 1:2007 (Cispr 11) IEN 61000-6-2 IMMUNITY EN 61000-6-2 IMMUNITY IEN 61000-6-2 IMMUNITY IEN 61000-6-2 IMMUNITY IEN 61000-6-2 IMMUNITY IEN 61000-6-2 Cons Ed 1.2-2009 Electrostatic Discharge Test IEN 61000-6-2 Cons Ed 1.2-2009 Electrostatic Discharge Test IEN 61000-4-4 Ed .2.0: 2004-07 Electrical Fast Transients Unit of 0.1000 Electrical Surge Test Inte to Line A Electrical Surge Test Inte to Line A During testing, normal performance occurs within the specification limits. Performance A During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator interve	I X I	-	boratory	
Tel: (847)-918-9866 EN 61000-6-3 EMISSIONS LIMITS B IEST METHOD LIMITS B Conducted Emissions B Conducted Emissions (DC Power Supply) B EN 61000-6-3 Am 1:2007 (Cispr 11) B Conducted Emissions (DC Power Supply) B EN 61000-6-2 IMMUNITY EN 61000-4-2 Cons Ed 1.2:2009 Level Constance Test 2 and 4 kV Contact Discharge A EN 61000-4-2 Cons Ed 1.2:2009 100 Hz, 69°-4 AM modulation, 900 Mtz, 100°/4 MM, 200 Hz, Square Wave, 36-1000, 4-2 Cons Ed 1.2:2009 100 V/M (10 V/M minimum) Reditored Immunity Test 100 V/M (10 V/M minimum) Reditored Immunity Test 100 V/M (10 V/M minimum) A N 61000-4-4 Ed, 2:: 2006 5 kV A EN 61000-4-4 Ed, 2:: 2: 2006 5 kV A EN 61000-4-4 Ed, 2:: 2: 2: 2009 3 & 10 V RMS		Ũ	5	
EN 61000-6-3 EMISSIONS TEST METHOD LIMITS B IEC 61000-6-3 Am 1:2007 (Cispr 11) B Radiated Emissions D B EC 61000-6-3 Am 1:2007 (Cispr 11) B Conducted Emissions (DC Power Supply) B EN 61000-6-2 IMMUNITY TEST METHOD LEVEL EN 61000-4-2 Cons Ed 1.2:2009 2 and 4 kV Contact Discharge A EN 61000-4-3 Cons Ed 1.2:2009 2 000 Hz, 80% AM 200 Hz, Square A EN 61000-4-3 Ed. 3.0: 2009 100 WL (10 V/M minimum) A Rediated Immunity Test 100 WL (10 V/M minimum) A EN 61000-4-4 Ed. 2.0: 2006 5.1 and 2 kV A EN 61000-4-5 Ed. 2.0: 2006 5.1 and 2 kV A Electrical Surge Test Line to Line EN 61000-4-5 Ed. 2.0: 2006 5.1 wd 2 kV A Electrical Surge Tes	6			
TEST METHOD LIMITS Rediated Emissions B IEC 61000-6-3 Am 1:2007 (Cispr 11) B Rediated Emissions B IEC 61000-6-3 Am 1:2007 (Cispr 11) B Conducted Emissions (DC Power Supply) B EN 61000-6-2 IMMUNITY TEST METHOD LEVEL A 6 and 8 kV Air Discharge A Electrostatic Discharge Test 2 and 4 kV CM reliable and and a kV Air Discharge A Electrostatic Discharge Test 2 and 4 kV CM reliable and a kV Air Discharge A EN 61000-4-3 Ed. 3.0: 2009 100 V/M minimum) A Electrical State 3.0: 2009 100 V/M modulation; 900 Wink; 100% AM, 200 Hz, Square A Electrical States Transients Line to Line A Electrical State 2.0: 2006 5 kV A Electrical Stateg Test Line to Line A Electrical Statege Test Common Mode A EN 61000-4-4 Ed. 2.2: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A Env 61000-4-4 Ed. 2.2: 2009 3 & 0 V RMS A Magnetic Immunity Three Axes <			-6-3 EMISSIONS	
Radiated Emissions B IEC 61000-6-3 Am 1:2007 (Cispr 11) B Conducted Emissions (DC Power Supply) B EN 61000-6-2 IMMUNITY EN 61000-6-2 IMMUNITY EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge EN 61000-4-3 Ed, 3.0: 2009 10 V/M (10 V/M minimum) Radiated Immunity Test 1000 Hz, 80% AM modulation, 900 Miz, 100% AM, 200 Hz, Square EN 61000-4-3 Ed, 2.0: 2004-07 5, 1 and 2 kV EN 61000-4-4 Ed, 2.0: 2006 5 kV EN 61000-4-4 Ed, 2.0: 2006 5 kV Electrical Surge Test Line to Line EN 61000-4-4 Ed, 2.0: 2006 5 kV A Electrical Surge Test Line to Line A EN 61000-4-4 Ed, 2.2: 2009 3 k 10 V RMS Conducted Immunity Common Mode Conducted Immunity Common Mode EN 61000-4-4: Surge Test Line to Line EN 61000-4-4: Surge Test Surger EN 61000-4-4: Surger Test A During testing, normal performance occurs within the specification limits. B During testing, temporary degradation, or loss				LIMITS
IEC 61000-6-3 Am 1:2007 (Cispr 11) Conducted Emissions (DC Power Supply) B EN 61000-6-2 IMMUNITY TEST METHOD LEVEL A EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge A EN 61000-4-2 Cons Ed 1.2:2009 2, ad 4 kV Contact Discharge A Electrostatic Discharge Test 2 and 4 kV Contact Discharge A EN 61000-4-3 Ed. 30: 2009 10 V/M (10 V/M minimum) Hz Radiated Immunity Test 1000 Hz, 90% AM modulation, 900 Mbz, 100% AM, 200 Hz, Square A Env 61000-4-4 Ed. 2.0: 2004-07 .5, 1 and 2 kV A Electrical Fast Transients Line to Line A Electrical Surge Test Line to Line A A Surge Test Li			ispr 11)	В
Conducted Emissions (DC Power Supply) EN 61000-6-2 IMMUNITY EN 61000-6-2 IMMUNITY TEST METHOD LEVEL EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge A Electrostatic Discharge Test 2 and 4 kV Contact Discharge A Electrostatic Discharge Test 2 and 4 kV Contact Discharge A Electrostatic Discharge Test 2 and 4 kV Contact Discharge A EN 61000-4-3 Ed. 3.0: 2009 10 V/M (10 V/M minimum) Radiated Immunity Test Notopol 1.4:20 GHz, 20: 27 GHz (reduced level) EN 61000-4-5 Ed. 2.0: 2004-07 5, 1 and 2 kV A Electrical Fast Transients Line to Line A Electrical Surge Test Line to Line A Electrical Surge Test Line to Line A El N 61000-4-5 Ed. 2.2: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A Magnetic Immunity Three Axes A Magnetic Immunity Three Axes A During testing, normal performance occurs within the specification limits. B During testing, temporary degradation, or loss of function or performance occurs that is self rec	X		ispr 11)	B
TEST METHOD LEVEL EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge A EN 61000-4-3 Ed. 3.0: 2009 10 V/M (10 V/M minimum) A Radiated Immunity Test 1000 Hz, 80% AM modulation, 900 Mhz, 100% AM, 200 Hz, Square A EN 61000-4-4 Ed. 2.0: 2004-07 .5, 1 and 2 kV A Electrical Fast Transients Line to Line A Electrical Surge Test 2: 2009 3 & 1000, 1.4:2.0 GHz, 2.0:2.7 GHz (reduced level) A Electrical Surge Test Line to Line A Electrical Surge Test Line to Line A EN 61000-4-5 Ed. 2.0: 2006 .5 kV A Electrical Surge Test Line to Line A EN 61000-4-5 Ed. 2.0: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A EN 61000-4-6 Ed. 2: 2001-03 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C. During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. Cold During testing, tempora	$ \mathbf{A} $			
TEST METHOD LEVEL EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge A EN 61000-4-3 Ed. 3.0: 2009 10 V/M (10 V/M minimum) A Radiated Immunity Test 1000 Hz, 80% AM modulation, 900 Mhz, 100% AM, 200 Hz, Square A EN 61000-4-4 Ed. 2.0: 2004-07 .5, 1 and 2 kV A Electrical Fast Transients Line to Line A Electrical Surge Test 2: 2009 3 & 1000, 1.4:2.0 GHz, 2.0:2.7 GHz (reduced level) A Electrical Surge Test Line to Line A Electrical Surge Test Line to Line A EN 61000-4-5 Ed. 2.0: 2006 .5 kV A Electrical Surge Test Line to Line A EN 61000-4-5 Ed. 2.0: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A EN 61000-4-6 Ed. 2: 2001-03 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C. During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. Cold During testing, tempora		ENI (1000		
EN 61000-4-2 Cons Ed 1.2:2009 2, 4, 6 and 8 kV Air Discharge A Electrostatic Discharge Test 2 and 4 kV Contact Discharge A EN 61000-4.3 Ed. 3.0: 2009 1000 Hz, 80% AM modulation, 900 Mbz, 100% AM, 200 Hz, Square Wave, 30-1000, 1.4:2.0 GHz, 2.0::2.7 GHz (reduced level) A EN 61000-4.4 Ed. 2.0: 2004-07 .5, 1 and 2 kV A Electrical Fast Transients Line to Line A Electrical Surge Test Line to Line A EN 61000-4.5 Ed. 2.0: 2006 .5 kV A Electrical Surge Test Line to Line A Electrical Surge Test Line to Line A EN 61000-4.5 Ed. 2.0: 2009 3 & 10 V RMS A Onducted Immunity Common Mode A EN 61000-4.5 Ed. 2.0: 2009 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A Vevel: B During testing, normal performance occurs within the specification limits. B Level: B During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C. During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D Degradation or lo		N		
EN 61000-4-3 Ed. 3.0: 2009 10 V/M (10 V/M minimum) A Radiated Immunity Test 1000 Hz, 80% AM modulation, 900 Mbz, 100% AM, 200 Hz, Square Wave, 30-1000, 14-2.0 GHz, 2.0-2.7 GHz (reduced level) A EN 61000-4-4 Ed. 2.0: 2004-07 .5, 1 and 2 kV A Electrical Fast Transients Line to Line A EN 61000-4-5 Ed. 2.0: 2006 .5 kV A Electrical Surge Test Line to Line A EN 61000-4-6 Ed. 2.2: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A EN 61000-4-8: 2001-03 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A Performance A During testing, normal performance occurs within the specification limits. B Level: A During testing, normal performance occurs within the specification limits. B During testing, normal performance occurs within the specification limits. B During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D Degradation or loss of function that is not recoverable occurs due to damage to equip		EN 61000-4-2 Cons Ed 1.2:2009	2, 4, 6 and 8 kV Air Discharge	
EN 61000-4-4 Ed. 2.0: 2004-07 .5, 1 and 2 kV A Electrical Fast Transients Line to Line A EN 61000-4-5 Ed. 2.0: 2006 .5 kV A Electrical Surge Test Line to Line A EN 61000-4-5 Ed. 2.0: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A EN 61000-4-8: 2001-03 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A Performance A During testing, normal performance occurs within the specification limits. B During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or		EN 61000-4-3 Ed. 3.0: 2009 Radiated Immunity Test 1000 Hz, 80	10 V/M (10 V/M minimum) % AM modulation, 900 Mhz, 100% AM, 200 Hz, Sc	puare A
EN 61000-4-5 Ed. 2.0: 2006 .5 kV A Electrical Surge Test Line to Line A EN 61000-4-6 Ed. 2.2: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A EN 61000-4-8: 2001-03 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A Performance A During testing, normal performance occurs within the specification limits. B During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or		EN 61000-4-4 Ed. 2.0: 2004-07	.5, 1 and 2 kV	A
Electrical Surge Test Line to Line EN 61000-4-6 Ed. 2.2: 2009 3 & 10 V RMS A Conducted Immunity Common Mode A EN 61000-4-8: 2001-03 30 A/M Min (800 A/M Applied) A Magnetic Immunity Three Axes A Performance A- During testing, normal performance occurs within the specification limits. B- During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C- During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or		2		A
Conducted Immunity Common Mode EN 61000-4-8: 2001-03 30 A/M Min (800 A/M Applied) Magnetic Immunity Three Axes Performance A- During testing, normal performance occurs within the specification limits. B- During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C- During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or	Q			
Magnetic Immunity Three Axes Performance A- During testing, normal performance occurs within the specification limits. B- During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C- During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or	I X I			
Level: B- During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C- During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or				A
Level: B- During testing, temporary degradation, or loss of function or performance occurs that is self recovering without operator intervention. C- During testing, temporary degradation, or loss of function or performance occurs that requires operator intervention or system reset. D- Degradation or loss of function that is not recoverable occurs due to damage to equipment, components, software, or				
George Bowman Report by: Midwest EMI Associates Narte Certified Engineer, EMC-000738NE		Level: B- During testing, temporary degradation, or without operator intervention. C- During testing, temporary degradation, or or system reset. D- Degradation or loss of function that is not r to loss or corruption of data. George Bowman Report by: Midwest EMI Associates	loss of function or performance occurs that is loss of function or performance occurs that re recoverable occurs due to damage to equipm BBBB Nem MEMBER	equires operator intervention ent, components, software, or

REF: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

Midwest EMI Associates, Inc. Electromagnetic Interference Laboratory 21234 W. Commercial Drive Mundelein, Il 60060

Midwest EMI Associates Test Service Report No. 2732, 2771

Test Specifications

EN 61000-6-3 Level B Conducted Emissions EN 61000-6-3 Level B Radiated Emissions EN 61000-4-2 Electrostatic Discharge EN 61000-4-3 Radiated Immunity EN 61000-4-4 Electrical Fast Transients EN 61000-4-5 Surge Test EN 61000-4-6 Conducted Immunity Test EN 61000-4-8 Magnetic Immunity

TFT BIV/VUM VALVE CONTROLLER (EP0406)

EMI Prototype

Conducted For:

Serial Number:

Test Device:

Mr. Tim Miller Task Force Tips 3701 Innovation Way Valparaiso, IN 46383 Ph: 1-219-462-6161 Fax: 1-219-464-7155

Dates of Test:

10-01-2009 through 10-30-2009

Technical Data Taken by and Report Written by:

George Bowman Midwest EMI Associates

NARTE Certified Engineer, EMC-000738NE

Mr. Tim Miller Senior Design Engineer Task Force Tips, Inc.

Approved By:

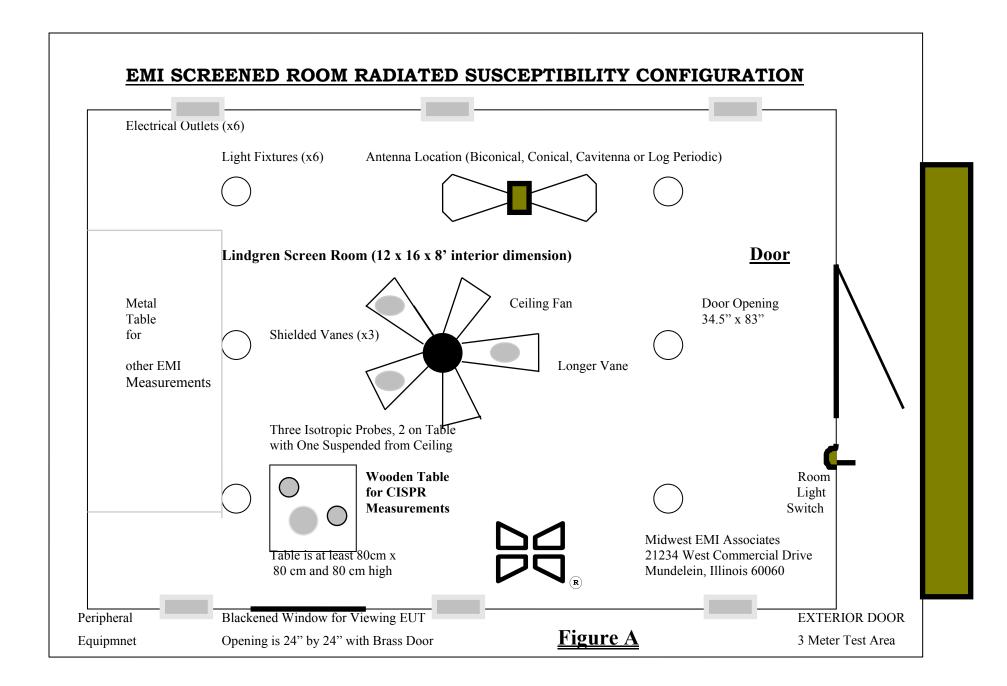
Page 2 of 38

1.0 <u>PURPOSE:</u>

The purpose of this test sequence is to qualify the compliance of the TFT BIV/VUM VALVE CONTROLLER (EP0406) to the IEC 61000-6-2 and 61000-6-3 commercial standards. This report covers testing to the IEC 61000-6-3 (Cispr 11) B level radiated and conducted emissions, IEC 61000-4-2 electrostatic discharge test, IEC 61000-4-3 radiated immunity standards, IEC 61000-4-4 electrical fast transients, IEC 61000-4-5 Surge Test, IEC 61000-4-6 conducted immunity test and IEC 61000-4-8 magnetic immunity test. The sponsor group has made many more improvements for this second round of tests.

2.0 <u>TEST FACILITY</u>:

All susceptibility testing was performed on the indoor three-meter site located at Midwest EMI Associates, 21234 W. Commercial Drive, Mundelein, Illinois 60060. Some testing utilized the screened room facility. The personnel access door measures 36" by 82" as shown in the attached room diagram, Figure A. Each power lead is filtered by a low-pass line filter. This interference filter provides substantially more insertion loss than that required for testing. The shielded room has within it a steel table with a copper ground plane (36"W X 72"L X 1/16"D thick) that is attached to the wall of the cage and is 3 feet off the floor of the cage, and has a DC resistance of less than 2.5 milliohms, complying with Military Standards 461. It also has a movable wooden table of 80 cm. height for CISPR testing. Power, which is available, consists of 120/230 VAC, 50/60 Hz.


Referring to Figure A, the major parts of the room which are used during testing are the interference filter which provides protection against external conducted signals, the screened viewing window which allows visual access to the device under test, AC line capacitors which properly terminate the line and neutral leads, and various antennas used for radiated emissions testing. The positions at which the device under test may be placed are identified on Figure A.

3.0 **DESCRIPTION OF TEST SAMPLE**:

The BIV/VUM Valve Controller designed under project EP0406 replaces the current A5822 valve motor control board. This re-design consists of three (3) boards, two of which are being designed and tested at this time with the results included in this report. The third board will be designed and tested at a future date. The first board is the A5825 motor control board. This board consists of microcontroller, 5 volt switching regulator, load dump TVS, encoder inputs, open/close inputs, and MOSFET h-bridge. The second board is the A5830 valve interface board, which consists of microcontroller, 5 volt switching regulator, load dump TVS, open/stop/close inputs, opened & closed feedback relays, and headers for Y5740 CANbus interface board. The third board is the valve operator station board, which again is not covered under this testing.

Communication between motor board and interface board is RS-485 serial protocol. Boards are typically powered by nominal 12 or 24 volt truck voltage system. Boards will be mounted in either anodized aluminum enclosure or painted aluminum enclosure. Appropriate cable ferrites will be used with motor control board.

The BIV/VUM valve control system will be used either to control a TFT RC Ball Intake Valve, which is used to supply water to a fire engine, or on a TFT RC Valve Under Monitor, which is used to control the water flow to a monitor typically mounted on an aerial device. Depending on the application, the customer will use the A5825 motor board either by itself or along with the A5830 interface board and/or the operator station board.

3.2 POWER REQUIREMENT:

The primary power supplied to the test sample was a 12 Volt Lead Acid Battery however the normal power is a fire engine battery.

3.3 GROUNDING:

No grounding was supplied to the test sample since it is battery operated.

3.4 RADIATED CONFIGURATION:

The test sample was oriented so that the area exhibiting the greatest amount of radiation was facing the antenna that was the front of the device.

3.5 TEST SAMPLE OPERATION:

The device was operated in its controlling or active movement mode during the test.

4.0 **DISPOSITION OF TEST SAMPLE**:

Upon completion of the test, the test sample was returned to the sponsor group.

5.0 <u>REFERENCES</u>:

EN 61000-6-1 Ed. 2.0 (2005-03), "Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 1: Immunity for residential, commercial and light-industrial environments"

EN 61000-6-2 Ed. 2.0 (2007), "Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments"

EN 61000-6-3 Ed. 2.0 (2007), "Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 3: Emission standard for residential, commercial and light-industrial environments"

EN 61000-6-4 Ed. 2.0 (2006-07), "Electromagnetic compatibility (EMC) - Part 6: Generic standards - Section 4: Emission standard for industrial environments"

EN 61326 Ed. 1 (2006-06), "Electrical equipment for measurement, control and laboratory use - EMC requirements"

IEC 60601-1-2 (2005), "Medical Electrical Equipment, Part 1: General requirements for safety. 2. Collateral Standard: Electromagnetic compatibility – requirements and tests"

Mil Std 461E, Part 4 "Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference"

Federal Communications Commission Document MP-4 "FCC method Measurement of Radio Noise Emissions from Computing Devices"

VDE 0871 through 877 European documents

Current IEC Standards 61000-4-1 through 61000-4-11 and IEC Standard "Medical Electrical Equipment Part 1, General Requirements for Safety" issued by TC62A

Cispr 22 (EN55022), Consol. Ed. 5.2, 2006-03, "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement"

Cispr 11 (EN55011) Cons. Ed. 4.1, 2009, "Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement"

CISPR Publication Number 16-1-1, (2006-11) Cons. Edition 1.1, "Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus", 1998

MDS-201-0004, "Electromagnetic Compatibility Standard for Medical Devices", 1979

IEC 50 (161), "International Electrotechnical Vocabulary, Chapter 161, Electromagnetic Compatibility"

6.0 **<u>GENERAL INFORMATION</u>**:

A diagram of the EMI facility and test equipment used is shown in the Appendices to this manual. The spectrum analyzer and other equipment are calibrated periodically by using their manufacturers' services.

6.1 **TEST PROCEDURES**:

The test limits for CISPR and IEC test configurations are located at the end of the various appendices for convenience. All test results and procedures are shown in the Appendices. Hereinafter, the equipment under test will be referred to as the E.U.T. or by its full description.

6.2 TEST DESCRIPTIONS:

All procedures below not referenced by individual protocol ("MEMI-XXX") numbers fall under the master EMI protocol, MEMI-7 "Electromagnetic Interference". Presently commercial devices are tested to 1 GHz per international convention for emissions and susceptibility.

The possible range of tests that could have application either domestically or internationally are listed below along with applicable protocol numbers. The references supplied provide information on how to perform the test. CISPR 11 & 22, Military Standard 462, and EN 61000 part 4 series are used as references for all procedures.

Midwest EMI assumes no liability for the performance of designs in the field derived from these protocols and the recommended criteria of acceptability. Midwest EMI will perform these tests as a service exclusively and will make every effort to assure the data is presented accurately and that the testing is uniformly applied per standards but we cannot guarantee to our customers that the product will gain acceptance by the market. In particular for life sustaining equipment, Midwest EMI recommends that a larger base of tests be performed to gain an accurate understanding of product performance.

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

- 6.2.1 **Appendix A1 (CISPR Conducted Emissions)** Limits are plotted for FCC or CISPR requirements for Level B emissions. Recommended criterion of acceptability is that A or B Level emissions are passed.
- 6.2.2 **Appendix B1 (CISPR Radiated Emissions)** Limits are plotted for FCC or CISPR requirements for Level B emissions. For some equipment this may include electric and VDE style magnetic emissions. *Criterion of acceptability for Europe is that* A or B level emissions must be passed.
- 6.2.3 **Appendix C (EN61000-4-4 Fast Transients)** Limits for EN 60601-1-2 and FDA Reviewer's Guide compliance are 2 KV common and 1 KV differential applied to the power cables and .5 KV applied to peripheral cables. *The criterion of acceptability is that there should be no permanent degradation in performance with the stress applied that is not recoverable automatically.*
- 6.2.4 **Appendix D (Radiated Susceptibility-EN 61000-4-3)** Limits are 3 10 V/M from 10 KHz to 1 GHz per EN 61000-4-3. For this class of product the immunity of the device must exceed the 3 V/M requirement to meet the IEC 60601-1-2 requirements. The criterion of acceptability is that there should be no degradation in performance or hardware failure when the EUT is exposed to any level lower and including the limit. In all cases the device must fail safely or it is rejected.
- 6.2.5 **Appendix E (EN 61000-4-5 Surge Immunity Test)** Recommended limits are 2 KV common mode and 1 KV differential mode at angles of 0, 90, 180, and 270 degrees. Ten repetitions at each condition are applied to the EUT. *The criterion of acceptability is no failure, serious malfunction or alarm may occur that is not self-recovered in 5 seconds.*
- 6.2.6 **Appendix F (EN 61000-4-6 Conducted Immunity Test)** Conducted bulk energy is applied via a voltage coupler to power leads and peripheral cables longer than 3 meters. This test is invasive in that the power line is preconditioned to allow the RF voltage to be applied to all leads of the equipment under test. It is also applied to peripheral cables using the similar coupler of the CS114 test except at a higher intensity typically. *The criterion of acceptability is that no malfunction occurs up to and including the 3 or 10 V RMS limit.*
- 6.2.7 **Appendix G (EN 61000-4-2 ESD Test)** The EUT is exposed to high intensity electrostatic pulses up to 8 kV air or 4 kV contact discharge. *The criterion of passing this test is no adverse malfunction that is not self-recovering within 5 seconds of the termination of the pulse.*
- 6.2.8 Appendix H (EN 61000-4-8 Magnetic Immunity Test) The EUT is exposed to high level magnetic fields of up to 10 Gauss. The criterion of passing this test is no adverse malfunction during application of the fields.

6.3 SPECTRUM ANALYZER CHARACTERISTICS:

This facility uses a type TEK 2756P/TEK 2712 automated spectrum analyzer and a USAFlex 486 Advanta 50 MHz measuring system. The 6 dB impulse bandwidth settings and wideband correction xaaaaaaaaaafactors are listed below:

Bandwidth <u>Setting</u>	Wideband <u>6dB Bandw</u>	<u>idth</u>	Correctio Factor		Factor	r Appli	<u>ed</u>
3 MHz 1 MHz .1 MHz 10 KHz 1 KHz .1 KHz	915.0	MHz KHz KHz KHz Hz Hz	-9.623 .7716 18.68 40.03 60.67 80.35	dB dB dB dB dB dB	$ \begin{array}{r} -10 \\ 0 \\ 20 \\ 40 \\ 60 \\ 80 \end{array} $	dB dB dB dB dB dB dB	
10 Hz	10	Hz	100	dB	100	dB	

TEK 2756P Analyzer

TEK 2712 Analyzer (Dual Analyzers in Use)

Bandwidth Setting	Wideband 6dB Bandwid		tion <u>Factor</u>		<u>Facto</u>	r Applied
5 MHz	4.92	MHz	-13.84	dB	-14	dB
1 MHz	.932	KHz	.6117	dB	0	dB
.3 MHz	.31	KHz	10.173	dB	10.5	dB
120 KHz	119	KHz	Cispr Red	quirec	l Bandwie	dth
9 KHz	8.48	KHz	41.43	dB	41	dB
3 KHz	3300	Hz	49.63	dB	50.5	dB
1 KHz	860	Hz	61.31	dB	60	dB
200 Hz	200	Hz	73.98	dB	74	dB

For test purposes, the correction factors are chosen to be at the nearest 20dB increment.

6.4 Certificates of Calibration

All certificates of calibration are maintained in a binder located at Midwest EMI Associates and are available for inspection. The present expiration dates of certified calibration by our manufacturers are:

a)	Tek2756P Spectrum Analyzer	BO20224	26 Mar 1 0
b)	Wavetek 2520A RF Generator	0222011	30 Mar 10
c)	Carver TFM-35 250 W/Ch. Audio Amp	3097104	N/A
d)	ENI RF Power Amplifier (525LA)	367	N/A
e)	ENI RF Power Amplifier (2100L)	129	N/A
f)	Eaton 15100B Power Amplifier	1529-07090	24 Mar 10
g)	Tektronix TDS 420 Oscilloscope	B021212	24 Mar 10
h)	EMCO 3109 Power Biconical $(1/3/10 \text{ Meters})$	9011-2504	17 Mar 10
i)	EMCO 3101 Power Conical	9007-3450	N/A (1/3m)
j)	EMCO 6502 Active Loop	1038	18 Mar 10
k)	EMCO 3301B Active E Field	9009-3044	19 Mar 10
l)	EMCO 3147 Wide Range Log Periodic	9102-1019	23 Mar 10
m)	EMCO 3107B Power E Field	9310-2435	N/A

Ref: TFT BIV_VVM VALVE CONTROLLER_EP0406 EMI.doc

``		10157	
m)	Amplifier Research FM1000	12456	N/A
n)	Amplifier Research FP1000	60701	21 Mar 10
o)	Amplifier Research FP1000	60488	3 Mar 10
p)	IFI EFS-4 E Field Susceptibility	39883	14 Mar 10
	(Holladay 3004EX with HSE405 Probe)		
q)	IFI LMT-B Light Modulator	1117-B	N/A
r)	IFI EFS-1 E Field Susceptibility	245738	N/A
s)	Solar 6741-1 RF Current Probe	911308	N/A
t)	Fluke 45 True RMS Voltmeter	EJ574714013	24 Mar 10
u)	Schaffner NSG 433 ESD Gun	107	
	and Contact Discharge Adapter	402-664/0	30 Mar 10
v)	Solar Loop Sensor 7334-1		N/A
w)	Solar Loop Sensor 9311-1	931101	N/A
x)	Solar RF Coupler 7415-3 906016	N/A	
y)	Solar Line Impedance Stabilization Network	8028-50-TS-24-	BNC N/A
z)	Solar VDE Filter Network	8907-250-TS-24	-BP N/A
aa)	Ohmic Instrument BET-300-ADL	522	25 Mar 10
ab)	Werlatone C1795 Dir. Coupler	3442	30 Mar 10
ac)	Solar Current Injection Probe Type 9108-1N	935012	N/A
ad)	Tektronix TR 503B Tracking Generator	B011216	25 Mar 10
ae)	Acme 2KVA Isolation Transformer	T-3-53042-S	N/A
af)	Xentek Extreme Isolation Transformer Model 5410 (2 in use		
ag)	Tektronix P6202 RF Probe		N/A
ah)	Staco Power Variac Type 3PN2210 (0-140VAC) 3.1KVA	N/A	- ()
ai)	Helmholtz Coil Stepdown Xfrmr-Chicago Xfrmer Type		N/A
aj)	Goldstar Signal Generator Mod FG-2002c 201621	25 Mar 10	14/11
ak)	Holladay Magnetic Field Probe Model HI-3624 83957 15		
al)	Tektronix 2712 Spectrum Analyzer (Quasipeak)	B022520	24 Mar 10
	Voltec PM100 Power Analyzer	AA04/8495	25 Mar 10
am)	-	1052	1 Mar 10
an)	EMCO 3142 Biconilog Antenna Haefely P90.1 EN 61000-4-4 Fast Transient Tester	083 593-14	19 Mar 10
ao)	Hewlett Packard 3400A AC Voltmeter	1218A14443 24	
ap)	Amplifier Research FP2031 Isotropic Probe		5 Mar 10
aq)	1 1	18309 583 334-05	
ar)	Haefely 250 600/00 (61000-4-5 Surge Tester)		19 Mar 10 7 Mar 10
as)	Fischer CISPR 14 Absorbing Clamp type F-201	235	7 Mar 10
at)	Fischer IEC 801-6 Transducer	165	23 Mar 10
au)	Solar 9123-1N Current Clamp	956015	23 Mar 10
av	Fischer IC 801-6 CDN FCC-801-M3-25	95	7 Mar 10
aw)	Tektronix 2712 Spectrum Analyzer (Quasipeak) B022981	24 Mar 10	
ax)	C. C. Moore Automated Mast Assembly Model DAPM4/6		N/A
ay)	C. C. Moore Automated Turntable Model DTT-4	N/A	
Z	Antenna Research LPB2520	1152	20 Mar 10
ba)	Behlman Power Pass 50 Hz AC Source (50, 60, 400 Hz) 0005	N/A	
bb)	California Instruments WP1251 AC Source (50, 60 Hz)	N/A	
bc)	Plitron Extreme Toroidal Isolation Transformers (2)		
bd)	Edmund Scientific Thermometer/Hygrometer	None	31 Mar 10
be)	Coaxial Bird Pads (x2) 8306-030-N3DB		30 Mar 10
bf)	High Current Source, Associated Research 3030D	A140006	25 Mar 10
bg)	California Instruments 5001ix High Power Source	HK52945	25 Mar 10

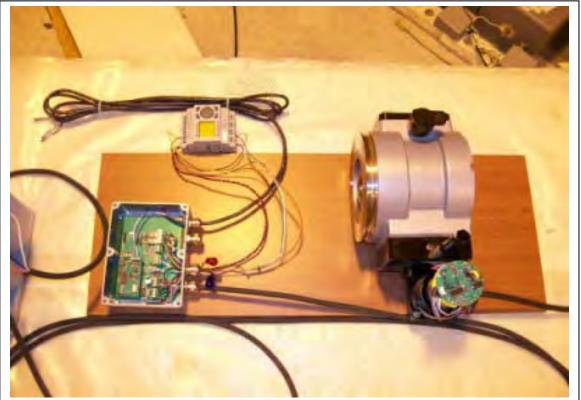
Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

bh)	Line Leakage tester, Associated Research 510L		130007	25 Mar 10
bi)	Hipot Tester, Associated Research 3570D		090595	25 Mar 10
bh)	GAASfet Preamplifier		None	25 Mar 10
bi)	Ametek Tachometer Model 1726		R035292	24 Mar 10
bj)	Bird Attenuator (x2), 75 Watt, 75-A-MFN	-10	R035290	N/A
bk)	HP 8482A Power Sensor		S/N: 2652A1	8474 24 Mar 10
bl)	HP 435B Power Meter		S/N: 2702A1	7563 24 Mar 10
bm)	Simpson Model 383 Thermometer	B001531	24 Mar 10	
bn)	Wavetek 27XT Voltmeter		96120787	24 Mar 10
bo)	HP 8657A Programmable Synthesizer	365	17 Mar 10	
bp)	Fluke 75			24 Mar 10
bq)	ENI 525LA			19 Mar 10
br)	Tek 495P Opt 5/7		B020147	30 Mar 10
bs)	Amplifier Research FP2036 (.5-5Ghz)			04 Sep 09

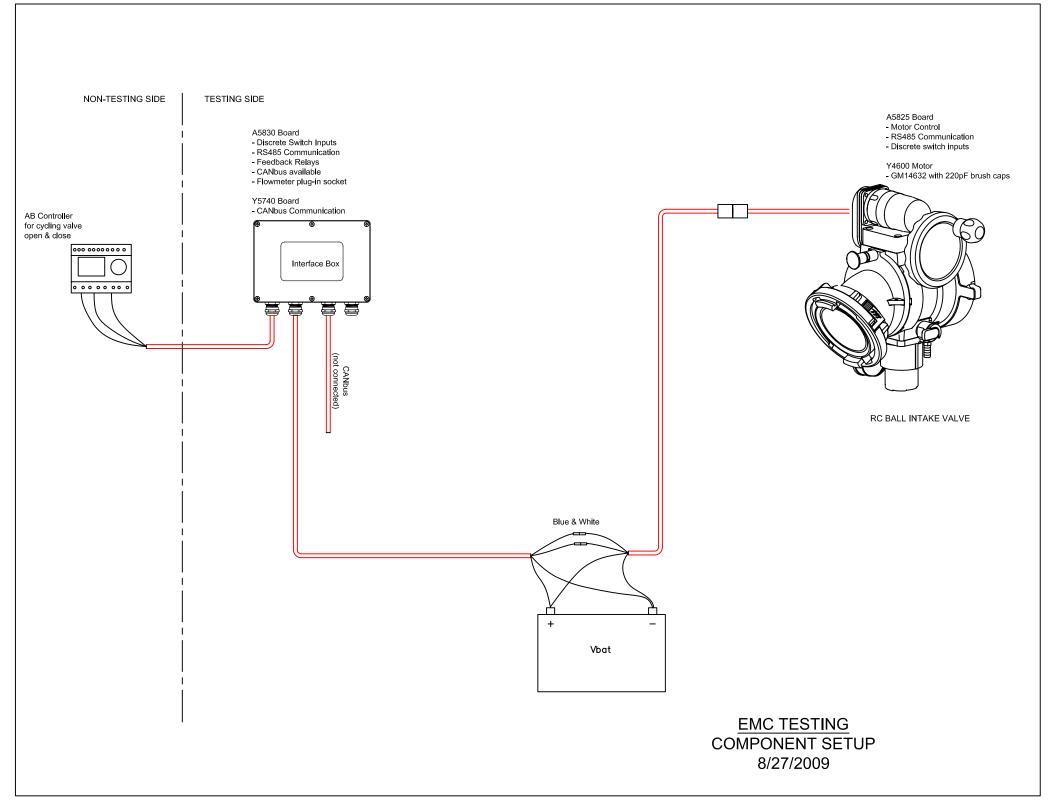
7.0 <u>CONCLUSION OF RADIO FREQUENCY INTERFERENCE</u> <u>EMISSIONS AND SUSCEPTIBILITY TESTS</u>:

The TFT BIV/VUM VALVE CONTROLLER (EP0406) was evaluated for all tests in the configuration requested by the sponsor group for compliance with the diagnostic instruments standards, IEC 61326-1:2006 and IEC 61000-6-3:2007. The configuration requested was that of the packaged unit system in an orientation that exercised its valve control head via a remote control connection.

The prototype required a few changes as summarized below. After the changes were added, the device was fully functional and controlled the valve properly.


EP0406 BIV_VUM Board Redesign EMC Testing

10/31/09 Testing at Midwest EMI


RC BIV

- Prototype motor board #2, 1.0.0 beta code
 - o QEA encoder line D20 schottky diode moved to after F1 (chip ferrite)
 - QEB encoder line D21 schottky diode moved to after F2 (chip ferrite)
 - OPEN input line
 - D22 schottky diode moved to after R15 (100k ohm res)
 - Added 0.01uF, 200V ceramic cap after R18 (1 ohm res)
 - CLOSE input line
 - D23 schottky diode moved to after R17 (100k ohm res)
 - Added 0.01uF, 200V ceramic cap after R19 (1 ohm res)

- Prototype interface board #1, 1.0.0 beta code
- Prototype Y5740 CANbus board #2, 1.0.0 beta code
- AB programmable relay cycling valve open & closed thru inputs on interface board
- 10' of 4/c cable from interface box to battery
- 10' of 4/c cable from motor Deutsch connector to battery
- 10' of 4/c cable from Y5740 board to nothing, 120ohm resistor across CANHI & CANLO
- 2' of 6/c cable from motor board to Deutsch connector
- Ferrites in motor enclosure
 - One Steward 28B0275-000 ferrite on each of power & ground leads
 - One Steward 28B0275-000 ferrite on blue & white comm wires
 - One Steward 28B0275-000 ferrite on gray & purple input wires
 - One Steward 28B0275-000 ferrite on 4 encoder wires
 - One Steward 28B0275-000 ferrite on 2 motor wires
- No ferrites in interface enclosure
- Using Optima battery for power

Page 10 of 38

Nemko Laboratory Authorisation

Aut. No.: ELA 175

EMC Laboratory: Midwest EMI Associates 21234 W. Commercial Drive, Unit F Mundelein, IL 60060 USA

Scope of
Authorization:All standards for EMC and radio transmission that are listed
on the accompanying page.

Nemko has assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against <u>ISO/IEC 17025</u> or equivalent. The laboratory also fulfils the conditions described in Nemko Document <u>NLA -10</u>. During the visit by the Nemko representative it was found that the Laboratory is capable of performing tests within the Scope of the Authorisation.

Accordingly, Nemko will normally accept test results from the laboratory on a partial or complete basis, with rights of review as stated in NLA-10, for certification of the products.

In order to maintain the Authorisation, the information given in the pertinent NLA-10 must be carefully followed. Nemko is to be promptly notified about any changes in the situation at the Laboratory, which may affect the basis for this Authorisation. The Authorisation may be withdrawn at any time if the conditions are no longer considered to be fulfilled.

The Authorisation is valid through 31 July 2010.

Dallas, Texas 12 Sep 2009 For Nemko AS:

BKaterlin

TB Ketterling, Nemko EMC Coordinator

Nemko Laboratory Authorisation

Aut. No.: ELA 175

SCOPE OF AUTHORIZATION

BASIC TESTS AND ASSOCIATED STANDARDS

Capability to perform a basic test implies also that any product (family) standard calling up this basic test is also within the scope if mentioned below or not.

	Disturbance emissions	
Electromagnetic radiation disturbance, 9 kHz to 30 MHz, re.: EN 55011 (CISPR 11), EN 60945 (IEC 60945)	Electromagnetic radiation disturbance, 30 to 1000 MHz, re.: EN 55011 (CISPR 11), EN 55013 (CISPR 13), EN 55022 (CISPR 22),	Electromagnetic radiation disturbance, above 1 GHz, re.: EN 55011 (CISPR 11), EN 55022 (CISPR 22)
<i>Electromagnetic radiation disturbance, 9 kHz to 30 MHz, "Van Veen loop", re:</i> EN 55015 (CISPR 15)	<i>Electromagnetic radiation disturbance,</i> 50 Hz to 50 kHz, re: EN 55103-1	Conducted common-mode disturbance power, 30-1000 MHz, re.: EN 55013 (CISPR 13) EN 55014-1 (CISPR 14-1)
Mains terminal disturbance voltage, re.: EN 55011 (CISPR 11), EN 55013 (CISPR 13), EN 55014-1 (CISPR 14-1), EN 55015 (CISPR 15), EN 55022 (CISPR 22), EN 60945 (IEC 60945),	Conducted terminal disturbance, Hi-Z probe, re: EN 55011 (CISPR 11) EN 55014-1 (CISPR 14-1)	Conducted discontinuous disturbance on power port, re.: EN 55014-1 (CISPR 14-1), section 4.2
Conducted common-mode disturbance at telecom/network ports, re.: EN 55022 (CISPR 22)	Conducted antenna terminal disturbance, re: EN 55013 (CISPR 13)	<i>Luminaire insertion loss, re:</i> EN 55015 (CISPR 15)
<i>Mains inrush current, re:</i> EN 55103-1	Harmonic current emissions, re.: EN 61000-3-2 (IEC 61000-3-2)	Voltage fluctuations and flicker in low-voltage supply systems, re.: EN 61000-3-3 (IEC 61000-3-3), EN 61000-3-11 (IEC 61000-3-11)
	Immunity	
Electrostatic discharge immunity test, Re.: EN 61000-4-2 (IEC 61000-4-2)	Radiated, radio-frequency, electromagnetic field immunity test, re.: EN 61000-4-3 (IEC 61000-4-3) ENV 50140:1993, ENV 50204:1995	Power frequency magnetic field Immunity test, re.: EN 61000-4-8 (IEC 61000-4-8)
Radiated audio-frequency H-field, re: EN 55103-2	Radiated E-field, 150 kHz to 150 MHz, re: EN 55020 (CISPR 20)	<i>Electrical fast transient/burst immunity test, re.:</i> EN 61000-4-4 (IEC 61000-4-4)
Surge immunity test, re.: EN 61000-4-5 (IEC 61000-4-5) ENV 50142:1994	Immunity to conducted disturbances, induced by radio-frequency fields, re.: EN 61000-4-6 (IEC 61000-4-6) ENV 50141:1993	Immunity to voltage dips, short interruptions and voltage variation, re.: EN 61000-4-11 (IEC 61000-4-11)
Conducted antenna terminal, re: EN 55020 (CISPR 20)	Conducted audio/video ports, re: EN 55020 (CISPR 20)	BLANK

Nemko Laboratory Authorisation

Aut. No.: ELA 175

PRODUCT-FAMILY STANDARDS

Briess specifically noted, only the sections of the standard's below which are covered by the capability isting above are samed covered by this automostation. When the capability is expanded, more parts of the product standard's will be covered. SM equipment, emission EN 550111998 + A1:99 (b0c=exp) + A2:2002 (d0c=1.10.05) CISPR 11:97 + A1:99 + A2:02 CISPR 22:1997 + A1:2000 + A2:2002 (d0c=1.8.03) A2:2002 (d0c=not harmonized yel) CISPR 22:1997 + A1:2000 + A2:2002 EN 5502:1994 + A1:1995 + A2:1997 (doc=xp) CISPR 22:1997 + A1:2000 + A2:2002 EN 5502:1994 + A1:1995 + A2:1997 (doc=xp) CISPR 22:1997 + A1:2000 + A2:2002 (doc=not harmonized yel) CISPR 22:1997 + A1:2000 + A2:2002 (doc=not harmonized yel) CISPR 22:1997 + A1:2000 + A2:2002 (doc=-1.1.04) EN 55103-1:1996 (doc=exp) Frofessional AV - emission EN 55103-1:1996 (doc=exp) + A1:2001 (doc=1.7.04) EC 61000-3:1995 + A1:1997 + A2:2098 (doc=exp) + A1:2001 (doc=-1.1.04) EC 61000-3:1995 + A1:1997 + A2:2098 (doc=exp) + Flicker EN 61000-6-1:2001 (doc=-1.7.04) EC 61000-6-2:1999 (doc=exp) EC 61000-6-1:1997 (doc) EN 61000-6-2:1999 (doc=exp) EN 61000-6-2:1999 (doc=exp) EN 61000-6-3:1997 (doc) EN 61000-6-3:1998 (doc=exp) EN 61000-6-3:1997 (doc=-1.7.04) EC 61000-6-2:1999 (doc=exp) EN 61000-6-3:1997 (doc) EN 61000-6-4:1997 (doc) EN 61000-6-4:1997 (doc) EN 61000-6-4:1999 (doc=exp) EN 61000-6-2:1999 (doc=exp) EN 61000-6-4:1997 (doc) EN 300 339 :1988 (doc=exp) EN 300 339 :1988 (doc=exp) EN 301 489-01:2001 V.1.3.1 (doc=31.12.04) EN 301 489-01:2001 V.1.3.1 (doc=31.12.04) EN 301 489-01:2001 V.1.3.1 (doc=ax) EN 301 489-01:2001 V.1.3.1 (doc=ax)		RODUCT-FAMILT STANDARL	
EN 55011:1998 + A1:99 (doc=exp) + A2:2002 (doc=1.10.05) CISPR 11:97 + A1:99 + A2:02 EN 55022:1998 + A1:2001 (doc=1.8.03) + A2:2002 (doc=not harmonized yet) CISPR 22:1997 + A1:2001 + A2:2002 (doc=not harmonized yet) CISPR 22:1993 + A1:1995 + A2:1997 (doc=exp) EN 55023:1998 (doc=exp) + A1:2001 + A2:2002 (doc=not harmonized yet) CISPR 22:1993 + A1:1995 + A2:1997 (doc=exp) Professional AV - emission EN 55103-1:1996 (doc=exp) Professional AV - immunity EN 55103-2:1996 (doc=exp) Harmonics Flicker EN 6100-63-3:1995 (doc=exp) + A1:2001 (doc=1.1.04) IEC 61000-3-3:1995 (doc=exp) + A1:2001 (doc=1.1.04) IEC 61000-63:2:1998 (doc=exp) + A1:2001 (doc=1.1.04) IEC 61000-63:2:1998 (doc=exp) + A1:2001 (doc=1.1.04) IEC 61000-63:2:1998 (doc=exp) + A1:2001 (doc=1.1.04) IEC 61000-63:2:1999 (doc=exp) + BN 61000-6-1:1997 (mod) IEC 61000-63:1999 (doc=exp) Generic immunity - flight EN 61000-6-1:1997 (mod) IEC 61000-6-2:1999 (doc=exp) Flicker SRD 25 - 1000 MHz, Art. 3.2 EN 61000-6-3:1996 (mod) SRD 25 - 1000 MHz, Art. 3.2 EN 61000-6-2:1999 (doc=exp) Flicker EN 61000-6-1:2001 (doc=1.7.04) IEC 61000-6-3:1997 (mod) EN 61000-6-2:1999 (doc=exp) IEC 61000-6-2:1999 (doc=exp) Flicker EN 61000-6-1:2001 (doc=-1.7.04) IEC 61000-6-3:1997 (mod) EN 61000-6-2:1999 (doc=exp) Flicker EN 6100-6-1:2001 (doc=-1.7.04) IEC 61000-6-3:1997 (mod) EN 8100 220-1:2000 EN 800 240-200 EN 50081-1:1992 (doc=exp) EN 61000-6-2:1999 (mod) EN 8100 220-1:2000 EN 800 240-202 V:1.13 (doc=exp) EN 300 1489-03 V:1.3 1 (2001) (doc=31.1.04) EN 300 34			
A2:2002 (doc=1.10.6) + CISPR 11:97 + A1:99 + A2:02 + A2:2002 (doc=1.10.6) + CISPR 11:97 + A1:99 + A2:02 - A2:2002 (doc=not harmonized yet) CISPR 22:1997 + A1:2000 + A2:2002 EN 5502:1994 + A1:1995 + A2:1996 - Professional AV - emission Professional AV - immunity EN 55103-1:1996 (doc=exp) Professional AV - immunity EN 55103-1:1996 (doc=exp) EN 55103-2:1996 (doc=exp) Flicker Generic immunity - light EN 61000-3-3:1995 (doc=exp) + A1:2001 EN 61000-6-1:2001 (doc=1.7.04) IEC 61000-3:1995 (doc=exp) + A1:2001 EN 61000-6-1:2001 (doc=1.7.04) IEC 61000-3:1995 (doc=exp) EN 50082-1:1997 (doc=exp) EIC 61000-6-3:1997 (mod) EN 50082-1:1997 (doc=exp) IEC 61000-6-3:1999 (mod) EN 61000-6-2:1999 (mod) EIC 61000-6-3:1997 (mod) EN 50082-1:1997 (doc=exp) EIC 61000-6-3:1999 (mod) EN 500831-2:1999 (doc=exp)	ISM equipment, emission	ITE - emission	ITE – immunity
CLSPR 22:1993 + A1:1996 Harmonics Professional AV - emission Professional AV - immunity EN 61000-32:2000 (doc=1.1.04) IEC 61000-32:2000 (mod) + A1:2001 EN 55103-2:1995 (doc=exp) + A1:1998 (doc=exp) EN 61000-32:2000 (mod) + A1:2001 EN 61000-32:21995 + A1:1998 + A2:1998 (doc=exp) + A1:1997 + A2:1998 (doc=exp) + A1:1997 + A2:1998 (doc=exp) + A1:2001 (doc=1.5.04) IEC 61000-3:3:1995 (doc=exp) + A1:2001 (EC 61000-3:1:1997 (doc=1.7.04) IEC 61000-6:1:1997 (mod) Generic immunity - light Generic immunity - light EN 61000-6:2:1999 (mod) EN 50082-1:1:1997 (doc=exp) Flicker Generic emission - light Generic emission - industry EN 50082-1:1:997 (doc=exp) EN 61000-6:2:1999 (mod) EN 50082-1:1:997 (mod) EN 5000-6-3:2001 (doc=1.7.04) IEC 61000-6-3:1990 (doc=exp) EN 61000-6-2:1999 (mod) EN 50082-1:1:999 (doc=exp) EN 61000-6:2:1999 (mod) EN 50082-1:1:999 (doc=exp) Generic emission - light Generic emission - industry EN 61000-6-3:2001 (doc=1.7.04) IEC 61000-6:2:1999 (mod) EN 50081-2:1993 (doc=exp) Generic Art. 3.1.b Telecom network equipment EN 300 389:1998 (doc=exp) SRD 1 GHz - 40 GHz. Art 3.2 EN 301 489-01:2001 V.1.3.1 (doc=31.12.04) EN 301 489-01:2001 V.1.3.1 (doc=31.12.04) EN 301 489-01:2001 V.1.3.1 (doc=exp) EN 301 489-01:2001 V.1.3.1 (doc=31.12.04) EN 301 489-01:2001 V.1.3.1 (doc=30.06.03) EN 301 489-01:2001 V.1.3.1 (doc=30.06.03) EN 301 489-01:2001 V.1.3.1 (doc=30.06.03) EN 301 489-01:2001 V.1.3.1 (doc=30.06.03) EN 301 489-01:2001 V.1.4.1 (doc=30.06.03) EN 301 489-01:2001	A2:2002 (doc=1.10.05)	+ A2:2002 (doc=not harmonized yet) CISPR 22:1997 + A1:2000 + A2:2002 EN 55022:1994 + A1:1995 + A2:1997	(doc=1.10.04) + A2 :2002 (doc=not harmonised yet)
EN 55103-1:1996 (doc=exp) EN 55103-2:1996 (doc=exp) EN 61000-3-2:2000 (doc=1.1.04) IEC 61000-3-2:2000 (mod) + A1:2001 EN 61000-3-2:1995 + A1:2001 EN 61000-3-2:1995 + A1:1997 + A2:1998 (doc=exp) + A1:2001 (doc=1.5.04) IEC 61000-3-3:1995 (doc=exp) + A1:2001 (doc=1.5.04) IEC 61000-3-11:00 (doc=1.7.04) IEC 61000-6-1:1097 (mod) EN 50082-1:1997 (mod) EN 50082-1:1997 (mod) Generic immunity - Industrial EN 61000-6-2:1999 (mod) EN 61000-3-3:1994 + A1:2001 IEC 61000-6-3:1000 (doc=1.11.03) IEC 61000-6-3:1996 (mod) Generic emission - industry EN 61000-6-2:1999 (mod) EN 61000-6-2:1999 (mod) EN 61000-6-3:1000 (doc=1.7.04) IEC 61000-6-3:1996 (mod) EN 61000-6-4:1997 (mod) EN 8100-6-2:1999 (mod) EN 61000-6-3:2001 (doc=1.7.04) IEC 61000-6-3:1996 (mod) EN 61000-6-4:1997 (mod) EN 8100-6-2:2001 (doc=exp) EN 61000-6-3:1096 (mod) EN 61000-6-4:1997 (mod) EN 300 220-3:2000 (doc=exp) EN 8000-6-2:2001 (doc=exp) Generic Art. 3.1.b EN 300 339:1998 (doc=exp) Telecom network equipment EN 300 386 V.1.3.1 (doc=31.12.04) SRD 1 GHz - 40 GHz. Art 3.2 EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.3.1 (doc=31.12.04) SRD 9 GHz - 40 GHz. Art 3.1.b EN 301 489-01:2001 V.1.3.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=30.01.05) ELANK			
Flicker Generic immunity - light EN 61000-32:1995 + A1:1997 + A2:1998 Flicker EN 61000-33:1995 (doc=exp) + A1:2001 (doc=1.7.04) EN 61000-61:2001 (doc=1.7.04) EN 61000-62:1999 (mod) EN 61000-62:1999 (mod) EN 61000-33:1995 (doc=exp) + A1:2001 (doc=1.7.04) EN 61000-61:1997 (mod) EN 61000-62:1999 (mod) EN 61000-62:1999 (mod) EN 61000-63:1000 (doc=1.7.04) EN 61000-64:1997 (mod) EN 61000-62:1999 (mod) EN 61000-62:1999 (mod) EC 61000-63:1906 (mod) EN 61000-64:1907 (mod) EN 800 220:2:000 EN 300 220:2:000 EN 50081-1:1992 (doc=exp) EN 50081-2:1993 (doc=exp) EN 300 220:2:2000 EN 300 220:2:2000 EN 300 339:1998 (doc=exp) EN 300 386 V:1.3:1 (doc=31.12.04) EN 300 220:3:2000 (doc=exp) EN 300 240-01 V:1.11 EN 301 489-03 V.1.3.1 (2001) EN 301 489-03 V.1.2.1 (2002) (not harmonised) EN 301 489-01 V.1.2.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=axp) EN 301 489-01:2000 V.1.2.1 (doc=30.11.05) EN 301 489-01:2000 V.1.2.1 (doc=axp) EN 301 489-01:2000 V.1.2.1 (doc=axp) EN 301 489-01:2000 V.1.2.1 (doc=30.11.05) EN 301 489-01:2000 V.1.2.1 (doc=axp) EN	Professional AV – emission	-	Harmonics
Flicker Generic immunity - light Generic immunity - light Generic immunity - light Generic immunity - light EN 61000-63:21995 + A1:1997 + A2:1998 F1/Cker EN 61000-33:1995 (doc=exp) + A1<:2001 (doc=1.5.04)	EN 55103-1:1996 (doc=exp)	EN 55103-2:1996 (doc=exp)	
EN 61000-3-3 : 1995 (doc=exp) + A1 : 2001 (doc=1.5.04) EN 61000-6-1: 2001 (doc=1.7.04) IEC 61000-3-3 : 1994 + A1 : 2001 EN 61000-3-3 : 1994 + A1 : 2001 EN 61000-3-3 : 1994 + A1 : 2001 EN 61000-3-3 : 1094 + A1 : 2001 IEC 61000-3-11 : 00 EN 61000-6-1: 2001 (doc=1.7.04) IEC 61000-6-2: 1999 (mod) EN 50081-1: 1997 (doc=exp) Generic emission - light EN 61000-6-3 : 1996 (mod) IEC 61000-6-3 : 1996 (mod) Generic emission - industry EN 61000-6-4 : 1997 (mod) SRD 25 - 1000 MHz, Art. 3.2 EN 300 220-1: 2000 EN 300 220-3: 2000 (doc=exp) Generic Art. 3.1.b Telecom network equipment EN 300 386 V.1.2.1 (doc=31.12.04) EN 300 386 V.1.3.1 (doc=31.12.04) SRD 1 GHz - 40 GHz. Art 3.2 EN 300 440-01 V.1.1.1 (doc=exp) EN 300 386 V.1.3.1 (doc=31.12.04) SRD 9 GHz - 40 GHz. Art 3.1.b Wideband & Hiperlan. Art 3.1.b EN 301 489-03 V.1.2.1 (2000) (doc=31.10.03) EN 301 489-01: 2000 V.1.2.1 (doc) (doc=30.06.03) EN 301 489-01: 2000 V.1.2.1 (doc=0.06.03) EN 301 489-01: 2000 V.1.2.1 (doc=0.06.03) EN 301 489-01: 2000 V.1.2.1 (doc=30.11.05) SIL ANIX			A2:1998 (doc=exp) + A14 :2000 (doc=1.1.04) IEC 61000-3-2:1995 + A1:1997 +
A1:2001 (doc=1.5.04) IEC 61000-6-1:1997 (mod) IEC 61000-6-2:1999 (mod) IEC 61000-3-3:1994 + A1:2001 EN 50082-1:1997 (doc=exp) IEC 61000-6-2:1999 (mod) EN 61000-3-11:00 EN 50082-1:1997 (doc=exp) IEC 61000-6-2:1999 (mod) Generic emission - light Generic emission - industry SRD 25 - 1000 MHz, Art. 3.2 EN 61000-6-3:1996 (mod) EN 61000-6-4:1997 (mod) EN 300 220-1:2000 EN 50081-1:1992 (doc=exp) EN 50081-2:1993 (doc=exp) EN 300 220-3:2000 (doc=exp) Generic Art. 3.1.b EN 50081-2:1993 (doc=exp) EN 300 320-3:2000 (doc=exp) EN 300 339 :1998 (doc=exp) EN 300 386 V.1.3.1 (doc=31.12.04) EN 300 440-01 V.1.1.1 (doc=exp) EN 301 489-03 V.1.3.1 (2001) EN 301 489-17 V.1.1.1 (2000) (doc=exp) EN 301 489-01 V.1.3.1 (doc=30.06.03) EN 301 489-03 V.1.2.1 (2000) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-03 V.1.4.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.3.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=exp) EN 301 489-01:2002 V.1.4.1 (doc=exp) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05) EN 301 489-01:2002 V.1.4.1 (doc=exp) EN 301 489-01:2002 V.1.4.1 (doc=exp)	Flicker	Generic immunity - light	Generic immunity – Industrial
EN 61000-3-11 :00 (doc=1.11.03) IEC 61000-3-11 :00 EN 50082-1.1997 (ddc=exp) EN 61000-6-2:1999 (ddc=exp) Generic emission - light EN 61000-6-3 :2001 (doc=1.7.04) IEC 61000-6-3 :1996 (mod) Generic emission - industry SRD 25 - 1000 MHz, Art. 3.2 EN 61000-6-3 :1996 (mod) EN 61000-6-4 :2001 (doc=1.7.04) IEC 61000-6-3 :1996 (mod) EN 50081-2:1993 (doc=exp) EN 300 220-1:2000 EN 300 220-3 :2000 (doc=exp) Generic Art. 3.1.b Telecom network equipment EN 300 386 : 1.3.1 (doc=31.12.04) SRD 1 GHz - 40 GHz. Art 3.2 EN 300 339 :1998 (doc=exp) EN 300 386 : V.1.3.1 (doc=31.12.04) EN 300 386 : V.1.3.1 (doc=31.12.04) EN 300 440-02 V.1.1.1 (doc=exp) EN 300 440-01 V.1.3.1 (doc=exp) SRD 9 GHz - 40 GHz. Art 3.1.b Wideband & Hiperlan. Art 3.1.b EN 301 489-03 V.1.3.1 (2001) (doc=31.0.8.03) EN 301 489-03 V.1.4.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=30.06.03) EN 301 489-01:2000 V.1.2.1 (doc=30.01.05) EN 301 489-01:2001 V.1.3.1 (doc=30.01.05)	A1 :2001 (doc=1.5.04)		
IEC 61000-3-11:00 Generic emission - light Generic emission - industry SRD 25 - 1000 MHz, Art. 3.2 EN 61000-6-3:1996 (mod) EN 61000-6-4:2001 (doc=1.7.04) IEC 61000-6-3:1996 (mod) EN 61000-6-4:2001 (doc=1.7.04) IEC 61000-6-4:1997 (mod) EN 300 220-2:2000 EN 300 220-3:2000 (doc=exp) Generic Art. 3.1.b Telecom network equipment SRD 1 GHz - 40 GHz. Art 3.2 EN 300 339 :1998 (doc=exp) No 3086 V.1.2.1 (doc=31.12.04) EN 300 386 V.1.2.1 (doc=31.12.04) EN 300 440-02 V.1.1.1 (doc=exp) EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.3.1 (2001) (doc=31.08.03) SRD 9 GHz - 40 GHz. Art 3.1.b Wideband & Hiperlan. Art 3.1.b EN 301 489-03 V.1.2.1 (2000) (doc=31.10.03) EN 301 489-03 V.1.2.1 (2000) (doc=31.00.03) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=30.06.03) EN 301 489-01:2000 V.1.2.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05) EN 201 200 V.1.2.1 (doc=exp) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05)		EN 50082-1 :1997 (doc=exp)	
EN 61000-6-3:2001 (doc=1.7.04) IEC 61000-6-3:1996 (mod) EN 61000-6-4:2001 (doc=1.7.04) IEC 61000-6-3:1997 (mod) EN 300 220-1:2000 EN 300 220-3:2000 (doc=exp) Generic Art. 3.1.b Telecom network equipment SRD 1 GHz - 40 GHz. Art 3.2 EN 300 339 :1998 (doc=exp) EN 300 386-2 V.1.1.3 (doc=sxp) EN 300 386 V.1.2.1 (doc=31.12.04) EN 300 440-02 V.1.1.1 (doc=exp) EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.1.1 (EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.3.1 (2001) SRD 9 GHz - 40 GHz. Art 3.1.b Wideband & Hiperlan. Art 3.1.b EN 301 489-03 V.1.3.1 (2001) SRD 1 GHz - 40 GHz. Art 3.1.b EN 301 489-03 V.1.2.1 (2000) (doc=exp) EN 301 489-03 V.1.2.1 (2000) EN 301 489-01:2000 V.1.2.1 (doc=sxp) EN 301 489-01:2000 V.1.2.1 (doc=30.6.03) EN 301 489-01:2000 V.1.2.1 (doc=sx0) EN 301 489-01:2001 V.1.3.1 (doc=30.6.03) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05)			IEC 61000-6-2:1999
IEC 61000-6-3 :1996 (mod) IEC 61000-6-4:1997 (mod) EN 300 220-2:2000 EN 50081-1:1992 (doc=exp) EN 50081-2:1993 (doc=exp) EN 300 220-3:2000 (doc=exp) Generic Art. 3.1.b Telecom network equipment SRD 1 GHz - 40 GHz. Art 3.2 EN 300 339 :1998 (doc=exp) EN 300 386 V.1.2.1 (doc=31.12.04) EN 300 386 V.1.3.1 (doc=31.12.04) EN 300 440-02 V.1.1.1 (doc=exp) EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.1.1 (EN 300 440-01 V.1.1.1 EN 300 440-01 V.1.3.1 (2001) SRD 9 GHz - 40 GHz. Art 3.1.b Wideband & Hiperlan. Art 3.1.b EN 301 489-03 V.1.3.1 (2001) (doc=31.08.03) EN 301 489-03 V.1.2.1 (2000) (doc=31.10.03) EN 301 489-01:2000 V.1.2.1 (2002) (not harmonised) EN 301 489-03 V.1.4.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=30.01.1.05) EN 301 489-01:2000 V.1.2.1 (doc=30.11.05) EN 301 489-01:2002 V.1.4.1 EN 301 489-01:2002 V.1.4.1	Generic emission – light	Generic emission - industry	SRD 25 – 1000 MHz, Art. 3.2
In Soudi-11.1532 (uble-exp)Generic Art. 3.1.bEN 300 339 :1998 (doc=exp)Telecom network equipmentEN 300 339 :1998 (doc=exp)SRD 1 GHz – 40 GHz. Art 3.2EN 300 339 :1998 (doc=exp)EN 300 386 V.1.3.1 (doc=exp)EN 300 386 V.1.3.1 (doc=31.12.04)SRD 1 GHz – 40 GHz. Art 3.2EN 300 440-02 V.1.1.1 (doc=exp)EN 300 440-02 V.1.1.1 (doc=exp)EN 301 489-03 V.1.3.1 (2001)Wideband & Hiperlan. Art 3.1.bEN 301 489-03 V.1.3.1 (2001)EN 301 489-01 V.1.1.1 (2000) (doc=exp)EN 301 489-03 V.1.2.1 (2000)IN 301 489-01 (2000 V.1.2.1 (doc=exp))EN 301 489-03 V.1.4.1 (2002) (not harmonised)EN 301 489-01 (2000 V.1.2.1 (doc=a.0.06.03)EN 301 489-01 (2000 V.1.2.1 (doc=30.11.05)EN 301 489-01 (2000 V.1.2.1 (doc=30.11.05)EN 301 489-01 (2000 V.1.2.1 (doc=30.11.05)EN 301 489-01 (2002 V.1.4.1 (doc=30.11.05)			EN 300 220-2:2000
EN 300 339 :1998 (doc=exp) $EN 300 386 \cdot 2 \vee 1.1.3 (doc=exp)$ $EN 300 386 \vee 1.2.1 (doc=31.12.04)$ EN 300 440-02 $\vee 1.1.1 (doc=exp)$ $EN 300 440-01 \vee 1.1.1$ $EN 301 489-03 \vee 1.2.1$ (2000) $(doc=31.10.03)$ $EN 301 489-01:2000 \vee 1.2.1$ (doc=exp) $EN 301 489-01:2000 \vee 1.2.1$ $(doc=30.06.03)$ $EN 301 489-01:2000 \vee 1.1.1$ $(doc=30.06.03)$ $EN 301 489-01:2002 \vee 1.4.1$ $(doc=30.11.05)$ $B \bot A \square K$ $A \square K$	EN 50081-1:1992 (doc=exp)	EN 50081-2:1993 (doc=exp)	EN 300 220-3 :2000 (doc=exp)
EN 300 339 .1998 (doc=exp) EN 300 386 V.1.2.1 (doc=31.12.04) EN 300 440-01 V.1.1.1 (doc=exp) SRD 9 GHz - 40 GHz. Art 3.1.b Wideband & Hiperlan. Art 3.1.b EN 301 489-03 V.1.3.1 (2001) (doc=31.08.03) EN 301 489-03 V.1.2.1 (2000) (doc=s0.01 V.1.2.1 (2002) (not harmonised) EN 301 489-01 2000 V.1.2.1 (doc=30.1200 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=ax) EN 301 489-01:2000 V.1.2.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05)	Generic Art. 3.1.b	Telecom network equipment	SRD 1 GHz – 40 GHz. Art 3.2
EN 301 489-03 V.1.3.1 (2001) (doc=31.08.03) EN 301 489-03 V.1.2.1 (2000) (doc=31.10.03) EN 301 489-03 V.1.4.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2002 V.1.4.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05) EN 301 489-01:2002 V.1.4.1	EN 300 339 :1998 (doc=exp)	EN 300 386 V.1.2.1 (doc=31.12.04)	EN 300 440-01 V.1.1.1
EN 301 489-03 V.1.3.1 (2001) (doc=31.08.03) EN 301 489-03 V.1.2.1 (2000) (doc=31.10.03) EN 301 489-03 V.1.4.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2000 V.1.2.1 (doc=30.06.03) EN 301 489-01:2000 V.1.2.1 (doc=30.11.05) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05)	SRD 9 GHz – 40 GHz. Art 3.1.b	Wideband & Hiperlan. Art 3.1.b	
(doc=30.06.03) EN 301 489-01:2002 V.1.4.1 (doc=30.11.05)	(doc=31.08.03) EN 301 489-03 V.1.2.1 (2000) (doc=31.10.03) EN 301 489-03 V.1.4.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp)	EN 301 489-17 V.1.2.1 (2002) (not harmonised) EN 301 489-01:2000 V.1.2.1 (doc=exp) EN 301 489-01:2001 V.1.3.1 (doc=30.06.03) EN 301 489-01:2002 V.1.4.1	BLANK
ETS 300 683 :1997(doc=exp)	(doc=30.06.03) EN 301 489-01:2002 V.1.4.1		
	ETS 300 683 :1997(doc=exp)		

Midwest EMI Associates Test Services Standard Test Report 2955 Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

APPENDIX A1

FCC/VDE CONDUCTED EMISSIONS TEST (EN55011, EN55022, EN55014)

1.0 <u>PURPOSE</u>:

The purpose of this test sequence is to perform compliance testing to FCC and VDE conducted emissions specifications. The test is always performed in a shielded enclosure with a Line Impedance Stabilization Network (LISN).

2.0 INTERIOR SHIELDED ROOM DESCRIPTION:

The 12.5' by 16.5' Lindgren indoor shielded room test site is situated in a 1250 sq. ft. building located at Midwest EMI Associates, 21234 W. Commercial Drive, Mundelein Illinois. This room has a solid steel exterior and copper interior with a blackened screen for visualization of the device under test. The Line Impedance Stabilization Network is bonded to a wall of the enclosure very near to the floor but in such a manner that its terminals are 40 centimeters off the floor. For both FCC and VDE tests, the LISN network has an approved low pass prefilter to permit proper measurement down to 10 kHz. In addition, if the EUT requires 220 VAC power, a Behlman Passport is provided capable of 1350 watts, 50 Hz. The LISN has applied to it a standard three terminal 120VAC IEC plug termination. If the plug style is different, then either a mating connector, a very short alligator clip network, or an equivalent length standard IEC cord is provided. In this case, the 220 VAC cord was used.

3.0 CONFIGURATION AND OPERATION OF TEST SAMPLE:

3.1 POWER REQUIREMENT:

The **TFT BIV/VUM VALVE CONTROLLER (EP0406)** was operated in its normal mode using 12 VDC battery power.

3.2 GROUNDING:

Any possible alternate ground provided for the test sample was interrupted by the linoleum floor upon which the sample was placed and which situates the test sample 10 cm. above the floor of the lab area. The main ground for the test sample is established by connection of the third wire to a LISN located remotely in the screened room. The EMC receiver, a Tektronix 2712, is located outside the screen room and is grounded with a two inch copper strap at the rear of the instrument and a 2 AWG welding cable at the front of the instrument. The EMC receiver and all measurement equipment including computers are otherwise isolated from the room using a Plitron extreme isolation transformer.

3.3 CONDUCTED CONFIGURATION:

In conducted tests, the test sample was oriented on the metal floor at a 40 cm. height over the ground plane to satisfy Cispr 11 or 22 B level test criterions. The LISN was terminated directly

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

with a brick wall 10 kHz rolloff filter that provides 20 dB attenuation to the signal going to the spectrum analyzer. All calibration data is maintained in files inside the computer running the analyzer via the GPIB bus. Data was read and plotted in PEAK mode using the capabilities of the Tek 2756P.

3.4 TEST SAMPLE OPERATION:

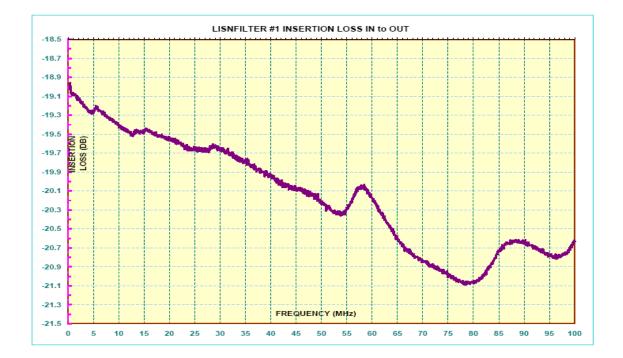
All test measurements were made with the unit in its normal measuring mode after a 3-minute power up period.

3.5 LIMITS OF ACCEPTANCE:

The general procedures are dictated in the individual protocols listed such as ANSI 63.4, FCC Part 15, CISPR 11, and CISPR 22. The limits for FCC rules presently are given in Part 15.109 of 47 CFR 1 (10-9-1990) Edition of the Federal Code of Regulations. For convenience these limits are plotted on the graphs and in registered in tabulated data.

VDE LIMITS

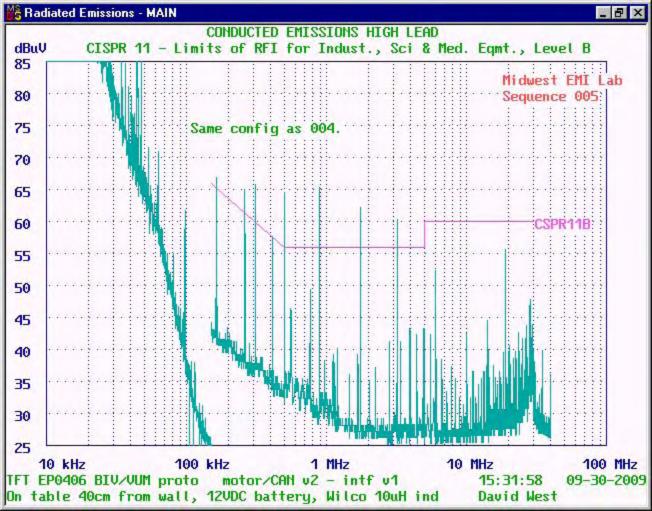
For CISPR 11 (EN55011), 22 (EN55022) or 14 (EN55014) B level conducted compliance starting at 150 kHz the allowed level is 66 dBuV and decreases at a linear rate with the log of frequency to 56 dBuV at 500 kHz. From 500 kHz to 5 MHz the allowed level is 56 dBuV, and 60 dBuV from 5 MHz to 30 MHz at the LISN mains.

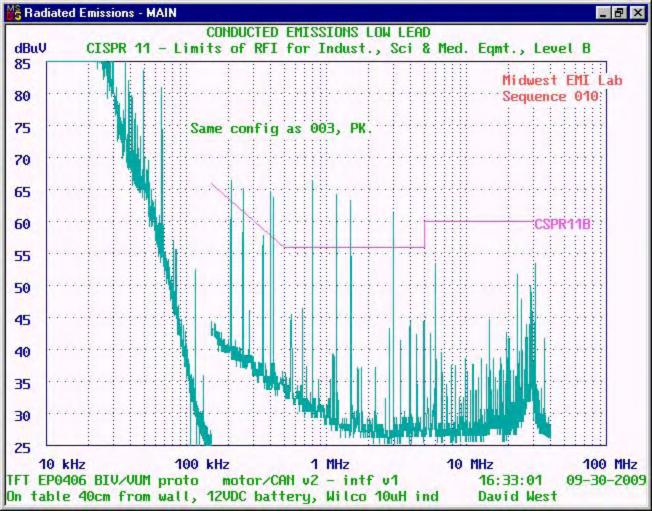

3.6 CALIBRATION DATA:

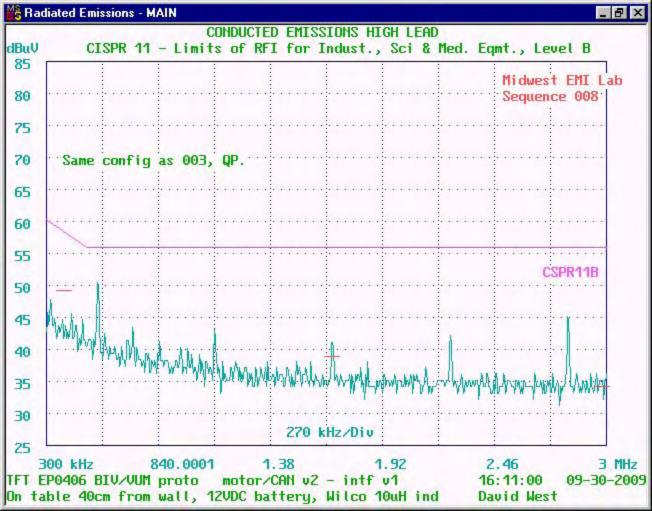
The results of the latest recalibration of the LISN's are contained on the next page over the range of 1 kHz to 1 MHz. The LISN is isolated from the spectrum analyzer by two 10-dB pads on either side of a five-pole rolloff filter. The insertion loss of each LISN has been compared and calibrated to that of a perfect LISN whose response is also shown.

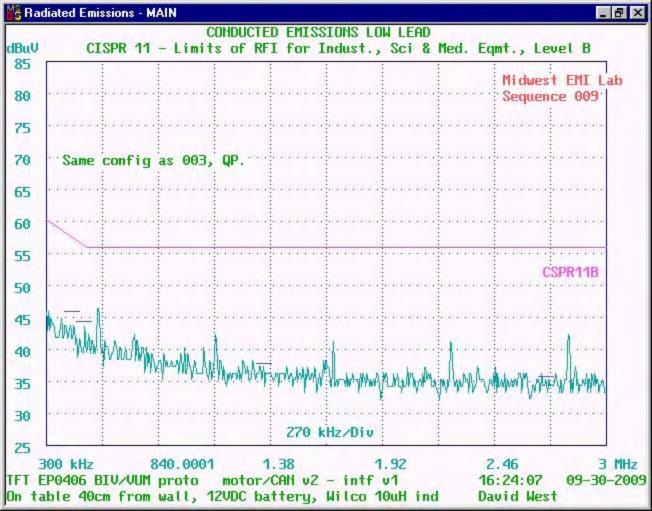
In the range higher than 1 MHz up to 100 MHz the characteristic of each LISN is flat with an insertion loss of no greater than 1.5 dB. In all cases the deviation from the perfect LISN response has been compensated for in a computer correction table file (approximately 150 points). The actual lower end of LISN response used for substantiation of customer data is 10 kHz.

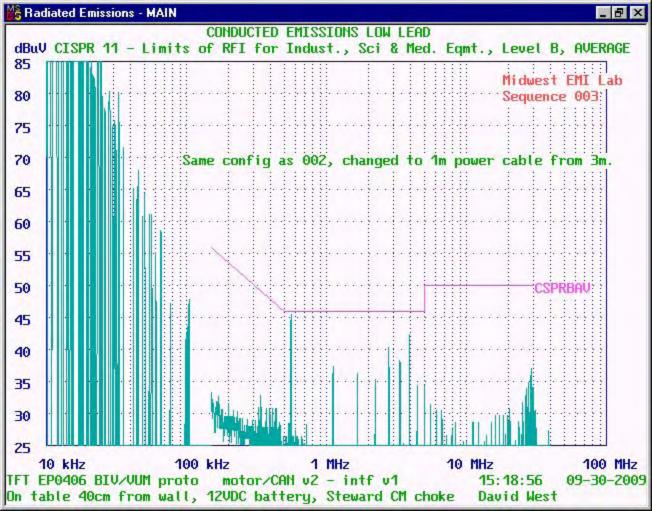
Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

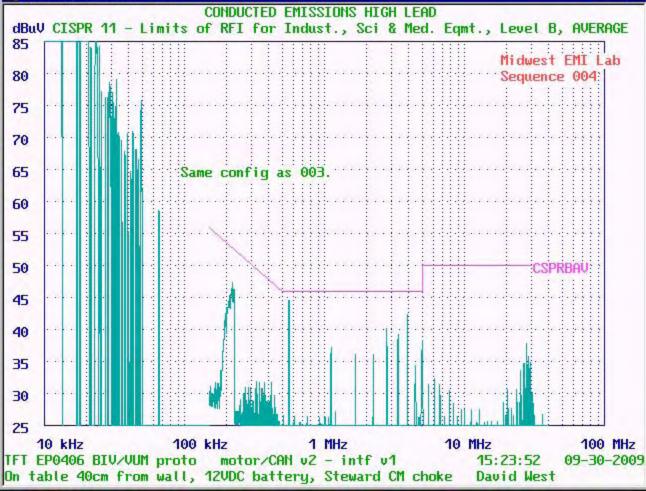





4.0 <u>CONCLUSION OF RADIO FREQUENCY</u> <u>INTERFERENCE EMISSIONS TESTS:</u>


The TFT EP0406 Valve Controller was measured for its conducted emissions per EN61000-6-3 for DC operated devices. After measuring and improving the system the Cispr B objective was achieved. Spikes seen in the data are from reversal of the valve motor.





SHEET 1		R11B CONDU h Lead	CTED QUASI-P	EAK REPORT	
CISPR 1	1 - Limite of	RFI for Indust	, Sci & Med. E	amt Loval R	
TIME: 16:1	1:00	Midwr	est EMI	qiiit., Level D	
	30-2009				
		6 BIV/VUM pr			
SERIAL NU	MBER: motor	r/CAN v2 - int	f v1		
			II, 12VDC batte	erv, Wilco 10u	IH ind
TEST PERF	ORMED BY:	David West	• • • • •		
Peak	Peak		Quasi-peak	Spec.	
Freq.	Interfer.		Interfer. Le		
(kHz)	(dBuV)	(kHz)	(dBuV)	(dBuV)	
<i>392</i>	61.98	387.08	49.28	<i>58.02</i>	
1677.263	61.46	1682.6	39.05	56.00	
2978	61.52	<i>2985.5</i>	34.32	56.00	

.

•

SHEET 1 CSPR11B CONDUCTED QUASI-PEAK REPORT Low Lead	
CISPR 11 - Limits of RFI for Indust., Sci & Med. Eqmt., Level B	
TIME: 16:24:07 Midwest EMI	
DATE: 09-30-2009 Associates	
TEST ITEM: TFT EP0406 BIV/VUM proto	
SERIAL NUMBER: motor/CAN v2 - intf v1 Sequence Number: 009	
COMMENTS: On table 40cm from wall, 12VDC battery, Wilco 10uH ind TEST PERFORMED BY: David West	
Peak Peak Quasi-peak Quasi-peak Spec.	
Freq. Interfer. Freq. Interfer. Level	
Freq. Interfer. Freq. Interfer. Level (kHz) (dBuV) (kHz) (dBuV) (dBuV)	
(kHz) (dBuV) (kHz) (dBuV) (dBuV)	
(kHz) (dBuV) (kHz) (dBuV) (dBuV) 435 61.060 427.14 45.960 57.157	
(kHz) (dBuV) (kHz) (dBuV) (dBuV)	

APPENDIX B1

FCC/VDE RADIATED EMISSIONS TEST (EN55011, EN55022, EN55014)

1.0 <u>PURPOSE</u>:

The purpose of this test sequence is to perform compliance testing to FCC Part 15, VDE 0871, CISPR 11 and 22 and other tests that can be run on a 3 meter indoor test site or in a screen room.

2.0 **INDOOR TEST FACILITY DESCRIPTION**:

The indoor test site is situated inside a 3000 sq. ft. building located at Midwest EMI Associates, 21234 W. Commercial Drive, Mundelein Illinois. This site has flat plane above which is situated multiple 1/2" thick 4 x 8 foot wood panels with double-sided galvanized steel plates comprising an overall dimension of approximately 24 by 32 feet. The plates are interconnected by "top hat" grounding connections that is further grounded by connection to the main power ground into the earth satisfying ANSI requirements. These tests require that the antenna be raised and lowered over a 1 to 4 meter distance on an antenna mast such that the radials clear obstructions by at least 1 meter. The size of the site will accommodate three-meter Cispr measurements. All objects are clear of the ellipse defined in ANSI for a three-meter site. The antenna mast is the C.C. Moore Company automated mast assembly Model DAPM4/6 and the antenna turntable is the C.C. Moore Company automated turntable Model DTT-4.

3.0 CONFIGURATION AND OPERATION OF TEST SAMPLE:

3.1 POWER REQUIREMENT:

The TFT BIV/VUM VALVE CONTROLLER (EP0406) was operated in its normal mode using a 12 VDC lead acid battery for power.

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

3.2 GROUNDING:

Any possible alternate ground provided for the test sample was interrupted by the wooden table upon which the sample was placed and which situates the test sample 80 cm. above the floor of the lab area.

The EMC receiver, a Tektronix 2712, is located outside the screen room and is grounded with a two inch copper strap at the rear of the instrument and a 2 AWG welding cable at the front of the instrument.

3.3 RADIATED CONFIGURATION:

In radiated tests, the test sample was oriented so that the area exhibiting the greatest amount of radiation was facing the antenna.

All measurements were performed using the peak and quasi peak reading capability of the Tek 2712.

3.4 TEST SAMPLE OPERATION:

All test measurements were made with the unit in its normal measuring mode after a 3-minute power up period. The EUT was pumping at its maximum rate during this test.

3.5 TEST PROCEDURES/LIMITS OF ACCEPTANCE:

The general procedures are dictated in the individual protocols listed such as ANSI 63.4, FCC Part 15, CISPR 11, and CISPR 22. The limits for FCC rules presently are given in Part 15.109 of 47 CFR 1 (10-9-1990) Edition of the Federal Code of Regulations. The antenna used is the Antenna Research LPB 2520 Biconilog antenna in both its horizontal and vertical modes for 5-meter compliance tests.

VDE LIMITS (ELECTRIC FIELDS - CISPR 11)

Above 30 MHz the limit is written at <u>30 meters</u>. From 30 MHz to 230 MHz the "A" level allowed is 30 uV/m, and 37 dBuV/m) from 230 MHz to 1000 MHz. Since the specification is written at 30 meters the extrapolated allowed values to 3 meters are 50 dBuV/m and 57 dBuV/m respectively. If this requirement is passed and the Cispr 11 B level limit is not passed then the following warning is recommended to be included in the instructions for use:

This (Equipment and/or System) is suitable for use in all establishments other than domestic and those directly connected to the low voltage power supply network that supplies buildings used for domestic purposes.

Sale of devices is not restricted when this warning is included in the instructions.

For CISPR 11 B level, the allowed radiated emissions are measured at a 10 meters distance. The allowed levels are 30 dBuV/m from 30 to 230 MHz, and from 230 to 1000 MHz the level is 37 dBuV/m. The levels have been linearly extrapolated on the graphs to 5 meters, which reflects a 6 dB increase.

Hereinafter, the equipment under test will be referred to as the E.U.T. All radiated tests above 30 MHz are made with horizontal and vertical polarizations where applicable.

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

4.0 <u>CONCLUSION OF RADIO FREQENCY INTERFERENCE</u> <u>EMISSIONS TESTS:</u>

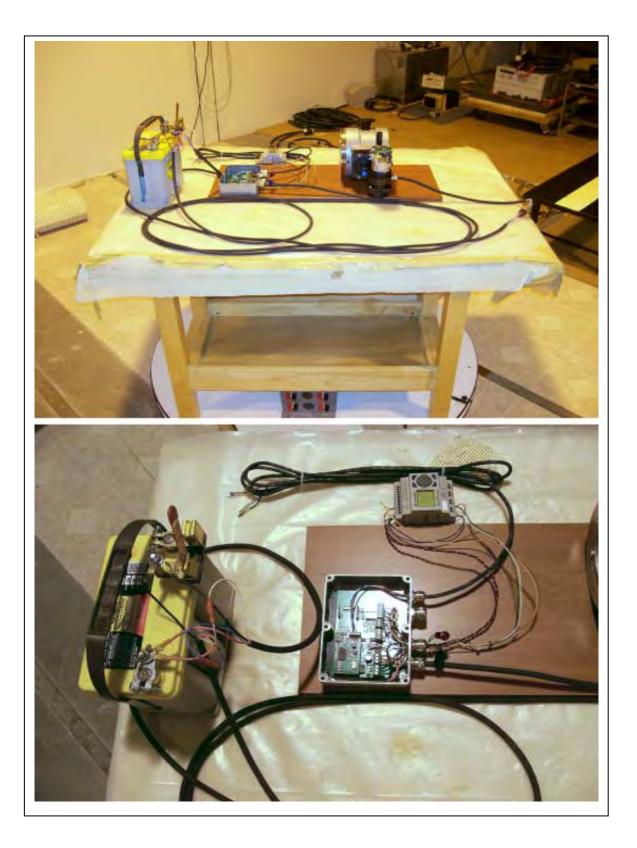
Preliminary Test

The device was oriented with the front of the EUT facing the antenna initially. The unit was varied in position and antenna height with a 1 meter antenna height found typically to be worst case. The orientation of the unit was typically with the control box and valve facing front at 0 degrees wrt the antenna.

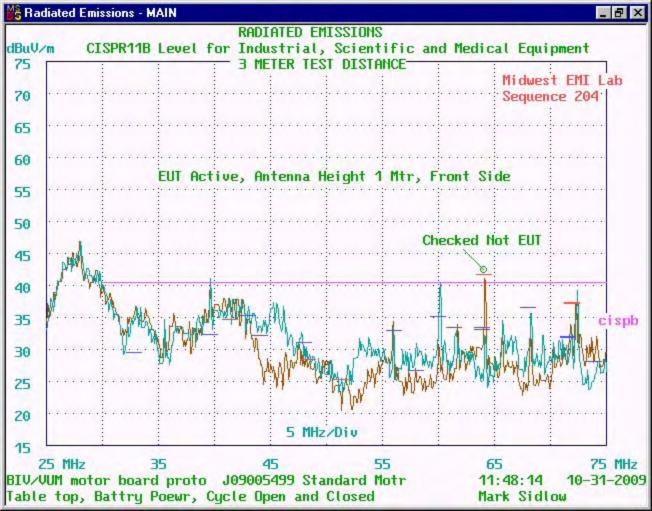
Final Testing – 10-31-09

Seq. 201 shows the ambient; Seq. 104 shows the quasipeak mode in comparison in the range of 20-75 MHz. All emissions were checked with one at 64 MHz found to be from the ambient, all others found to be in compliance as confirmed by the quasipeak measurement. Tabular data is shown at the end of the graphical data.

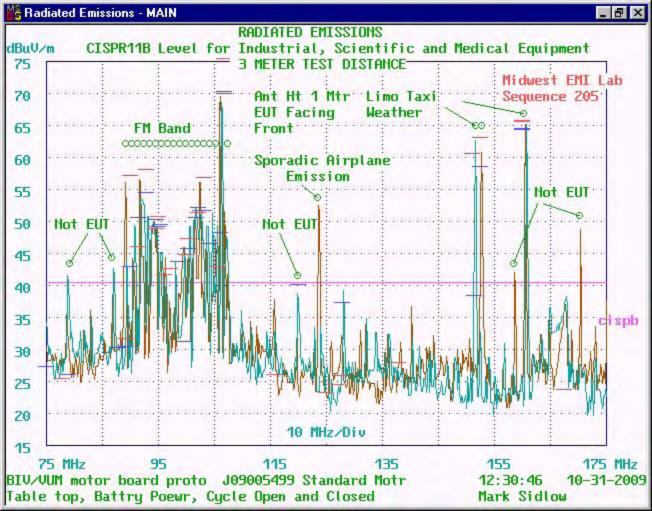
In the 75-170 MHz range, Seq. 206 shows the ambient and Seq. 205 shows the quasipeak emissions. Ambient emissions consist of the FM band and the intentional radiators at 152-158 and 162 MHz. Emissions above the line in the mid band area were discovered to be sporadic airplane emissions. No other emissions from the EUT appeared to be above the line.

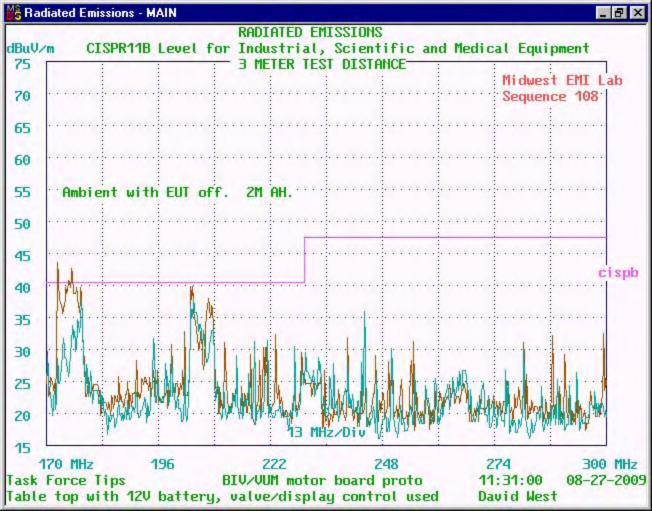

In the 160-300 MHz range, the ambient is shown on Seq. 108, and peak level on Seq. 115. No areas of emission from the EUT appeared to exceed the limit. Other emissions seen were from TV Channels 7 and 11, and a common carrier at about 220 MHz.

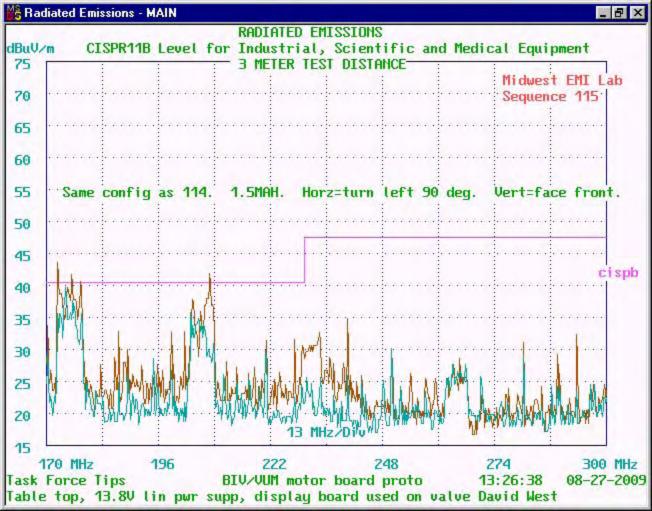
In the 300-640 MHz, the ambient is shown on Seq. 115 and the peak level emissions are shown on Seq 119. Other high emissions are numerous UHF TV stations and they are identified. Two emissions found in this range different from the ambient were individually inspected and not found to be due to the EUT but were from limo/taxi services.

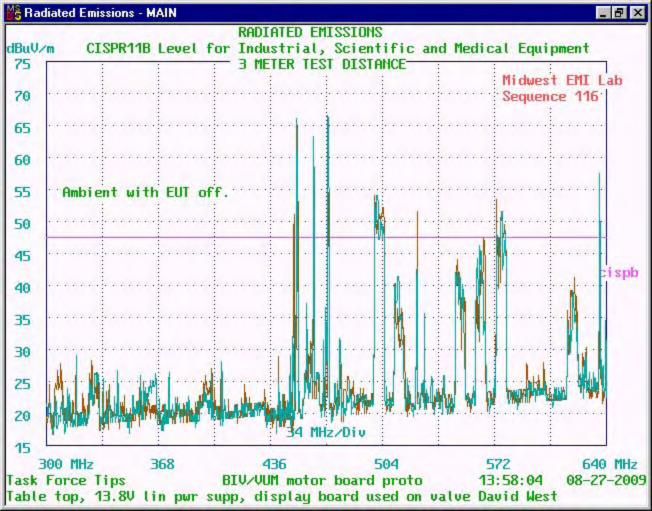

In the 620-1000 MHz, the ambient is shown on Seq. 117 and peak level on Seq. 120. Other high emissions are numerous UHF TV stations and the cell telephone band around 900 MHz that is identified. When the graphs were overlaid, no excess level introduced by the EUT was seen.

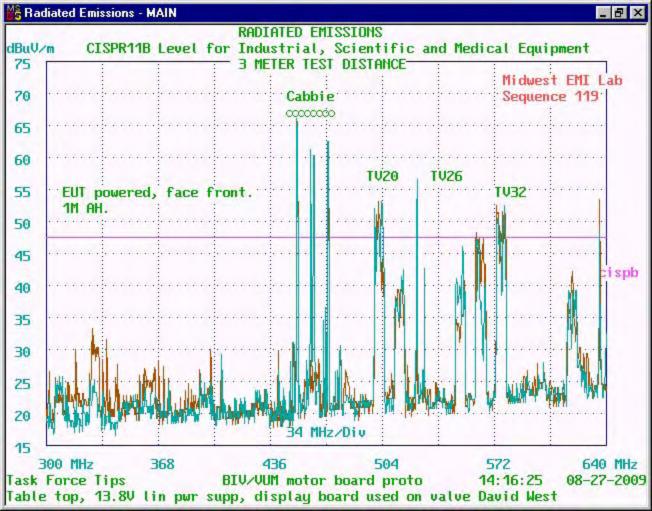
The TFT BIV_VUM Valve Controller was fully compliant with the Cispr 11 B level specification. The actual battery used for this test was a large 12 volt lead acid battery that was attached to the battery terminals by clip leads.

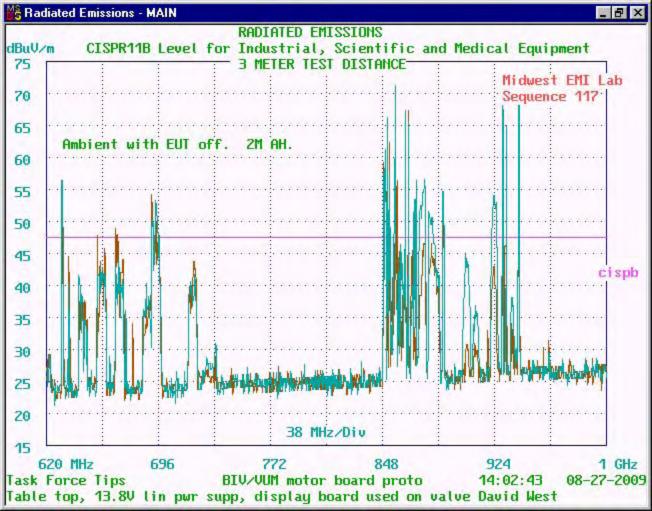

Midwest EMI Associates Test Services Standard Test Report 2955 Ref: IFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

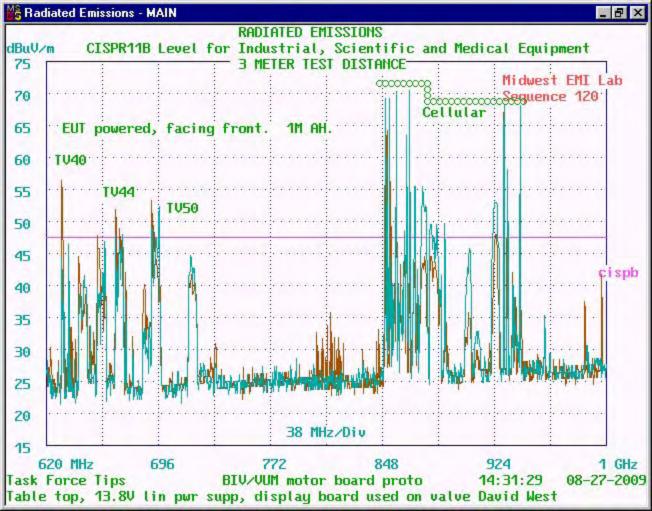












SHEET 1 cispb RADIATED QUASI-PEAK REPORT CISPR11B Level for Industrial, Scientific and Medical Equipment 3 METER TEST DISTANCE						
TIME: 11:48: DATE: 10-31- TEST ITEM: B SERIAL NUME	14 2009 IV/VUM moto	Midwest EN Associat	Al :es oto	Seaue	nce Number: 204	
COMMENTS: '	Table top, Ba MED BY: Mar	ttry Poewi				
	Peak Qu	asi-peak Q	uasi-peak	Spec.	Antenna Polarization	
(MHz)	(dBuV/m) (MHŻ) (C	iBuV/m) (dBuV/m)		
41.34483	41.86	41.3624	34.72	40.50	Horizontal	
48.2497	39.51	48.3465	28.51	40.50	Horizontal	
51.66766 63.97424	49.65	51.4813	25.45	40.50	Horizontal	
03.97424 71.84464	43.35 35.84	64.01900 71.9958	41.85 37.20	40.50 * 40.50	Horizontal Horizontal	
72.06247	41.21	71.99850	37.40	40.50	Horizontal	
32.65563	39.31	32.8508	29.58	40.50	Vertical	
39.53247	42.44	39.6893	32.42	40.50	Vertical	
42.79303	40.98	42.9762	35.43	40.50	Vertical	
44.21691 48.16221	42.76 39.61	44.0233 47.9998	32.22 31.24	40.50	Vertical Vertical	
40.10221 55.91741	35.39	47.9998 56.0134	31.24	40.50 40.50	Vertical	
58.18977	41.03	58.0122	26.77	40.50	Vertical	
59.98219	41.78	60.011	35.28	40.50	Vertical	
61.38929	36.53	61.4845	33.54	40.50	Vertical	
63.94853	43.70	64.01730	33.15	40.50	Vertical	
63.95504	36.45	64.0102	33.45	40.50	Vertical	
68.17968	39.39	68.00449	36.66	40.50	Vertical	
71.71377	35.69	71.5874	32.18	40.50	Vertical	
71.73912	41.01	71.58710	31.88	40.50	Vertical	
73.83638	33.24	74.0164	28.15	40.50	Vertical	

SHEET 1 cispb RADIATED QUASI-PEAK REPORT CISPR11B Level for Industrial, Scientific and Medical Equipment 3 METER TEST DISTANCE						
TIME: 12:30:4	16	Midwest	EMI			
DATE: 10-31-	2009	Associ	ates			
TEST ITEM: B	V/VUM mot	or board p	proto	• • • • • • • •		
	ER: J09005	5499 Stand	lard Motr	sequel	nce Number: 205	
COMMENTS: 1 TEST PERFOR	ADIE TOP, B	attry Poel	wr, cycle op	pen and Ci	osea	
				~~~~~	0000000	
Peak			Quasi-peak		Intenna	
Frequency		Freq.	Interfer.		olarization	
(MHŻ)	(dBuV/m)		(dBuV/m)		(H/V)	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$						
70.000	40.00		DE E/	40 50	TT	
78.000 89.38638	42.37 58.21	77.9696 89.32080	25.56 31.77	40.50 40.50	Horizontal Horizontal	
90.09998	47.47	90.0984	57.31	40.50 *	Horizontal	
91.50008	58.02	90.0984 91.4777	46.16	40.50 *	Horizontal	
92.70005	46.44	92.7225	58.19	40.50 *	Horizontal	
94.69927	50.08	94.7761	49.06	40.50 *	Horizontal	
94.69878	52.55	94.7556	49.25	40.50 *	Horizontal	
95.14409	47.77	95.1033	50.82	40.50 *	Horizontal	
95.90066	47.31	96.0111	41.78	40.50 *	Horizontal	
96.83324	43.36	97.0324	42.66	40.50 *	Horizontal	
99.78773	48.85	99.9853	44.88	40.50 *	Horizontal	
100.2125	47.82	100.3221	47.45	40.50 *	Horizontal	
102.2954	53.03	102.3434	51.81	40.50 *	Horizontal	
102.4	58.01	102.2664	51.51	40.50 *	Horizontal	
103.1049	48.77	103.1225	57.03	40.50 *	Horizontal	
105.5574	49.53	105.5486	43.10	40.50 *	Horizontal	
106.8	53.82	106.672	75.60	40.50 *	Horizontal	
115.6	42.48	115.772	26.18	40.50	Horizontal	
124.7854 126.6035	48.43 45.83	124.9846 126.7947	23.32 24.61	40.50 40.50	Horizontal Horizontal	
120.0055	45.08	120.7947	25.99	40.50	Horizontal	
138	44.32	138	28.02	40.50	Horizontal	
150.9425	62.00	150.9609	60.71	40.50 *	Horizontal	
152.3149	62.31	152.3221	63.20	40.50 *	Horizontal	
159.8652	46.07	159.9868	65.80	40.50 *	Horizontal	
159.9751	64.84	159.9823	65.70	40.50 *	Horizontal	
167.4	42.46	167.544	23.78	40.50	Horizontal	
75.000	45.68	75.0224	27.38	40.50	Vertical	
78.82697	46.56	78.767	26.24	40.50	Vertical	
87.66817	46.59	87.73779	30.39	40.50	Vertical	
89.11162	47.25	89.31319	30.47	40.50	Vertical	
90.10017	51.20	90.1122	43.12	40.50 *	Vertical	
91.50001	54.86	91.47199	50.66	40.50 *	Vertical	
92.70014	53.74	92.7081	54.58	40.50 * 40.50 *	Vertical	
94.51674 95.16579	51.82 51.26	94.69670 95.11060	50.44 49.32	40.50 * 40.50 *	Vertical Vertical	
95.59999	<b>47.8</b> 1	95.11000 95.468	49.32 49.58	40.50 *	Vertical	
98.68868	46.44	<b>93.408</b> <b>98.7135</b>	49.38	40.50 *	Vertical	
<b>99.59999</b>	47.69	<b>99.5664</b>	31.38	40.50	Vertical	
100.2859	56.12	100.3115	45.85	40.50 *	Vertical	
101.8237	54.43	101.8941	50.72	40.50 *	Vertical	

SHEET 2 cispb RADIATED QUASI-PEAK REPORT CISPR11B Level for Industrial, Scientific and Medical Equipment 3 METER TEST DISTANCE TIME: 12:30:46 Midwest EMI DATE: 10-31-2009 Associates TEST ITEM: BIV/VUM motor board proto							
SERIAL NUM	BER: J09005	499 Standard	Motr		nce Number: 205		
	Table top, Ba RMED BY: Mar	attry Poewr, k Sidlow	Cycle Op	en and Cl	osed		
Peak		Jasi-peak Qua Freq. Int			Antenna Polarization		
(MHz)				dBuV/m)			
102.4	53.71	102.2704	52.21	40.50 *	Vertical		
103.1067	51.67	103.0627	51.82	40.50 *	Vertical		
104.6	53.17	104.4	46.65	40.50 *			
105.7103	51.27	105.8951	48.36	40.50 *	Vertical		
106.7	69.81	106.7112	70.41	40.50 *			
106.6997	50.16	106.7125	70.01	40.50 *	Vertical		
119.9647	43.23	120.0039	40.22	40.50	Vertical		
128	42.17	128.004	37.37	40.50	Vertical		
151.7427	63.30	151.5427	38.50	40.50	Vertical		
152.3149	60.61	152.3565	58.60	40.50 *	Vertical		
159.8667	44.57	159.9907	64.60	40.50 *	Vertical		
159.9751	65.55	159.9767	64.50	40.50 *	Vertical		



### 1.0 <u>PURPOSE:</u>

The purpose of this test is to insure that commercial or medical devices will not be susceptible to electrical spikes or transients applied to their input AC or DC leads. This investigation evaluated the immunity of the EUT to controlled fast, low energy transients on the power or peripheral cable input lines. The burst duration is typically 15 ms and the repetition rate of the salvo of pulses is about 300 ms for commercial equipment. The applicable standard is the European IEC 61000-4-4 regimen.

### 2.0 DESCRIPTION OF TEST APPARATUS:

The test apparatus for this test consists of the Haefely P90.1 (Article 093 204.1), S/N 083 485-32 with attendant cables and Cable Adapter 093 506.1 S/N 083 593-14. The general configuration of the test unit is described in the following test report.

### 3.0 <u>TEST PROCEDURES:</u>

#### 3.1 POWER LEADS:

Application of the EFT generator to the EUT was performed with the power input cable routed vertically, from the EFT/B generator to the EUT. Power of 120 VAC/ 60- Hz was applied through the line and neutral leads of the EFT generator that included an internal coupler/decoupler mechanism. The power leads were less than one meter per standard. If longer ones are supplied by the manufacturer the excess is gathered into a flat coil with a .4 meter diameter and situated at a distance of .1 meter above the ground reference plane.

#### 3.2 POLARITY and TEST LEVELS:

The electrical fast transient/burst was applied for the following modes of operation:

- 1) Line with respect to the GRP (Ground Reference Plane)
- 2) Neutral with respect to the GRP
- 3) Line and Neutral with respect to the GRP
- 4) Protective Earth with respect to the GRP
- 5) Line and Protective Earth with respect to the GRP
- 6) Neutral and Protective Earth with respect to the GRP
- 7) Neutral, Line and Protective Earth with respect to the GRP

Tests were performed for the following EFT/B voltage levels, repetition rates, period and duration, for asynchronous triggering with respect to the AC line input:

#### Midwest EMI Associates Test Services Standard Test Report 2955

#### Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

LEVEL	OPEN CIRCUIT OUTPUT TEST VOLTAGE	REPETITION RATE	BURST DURATION	BURST PERIOD
1	.5 KV	5.0 KHZ	15 MSEC	300 MSEC
2	1 KV	5.0 KHZ	15 MSEC	300 MSEC
3	2 KV	5.0 KHZ	15 MSEC	300 MSEC
4	4 KV	2.5 KHZ	15 MSEC	300 MSEC

The test duration of each test, at each voltage level, for each mode of operation, for positive and negative polarities was 2 minutes.

#### 3.3 EFT GENERATOR CHARACTERISTICS:

Per standard and generator specifications the following are the EFT characteristics:

Maximum energy: 4 mJ/pulse at 2KV into 50 ohm load Polarity: Positive/Negative Output type: Coaxial (Cable Clamp Operation) Dynamic source impedance: 50 ohms +/- 20% /1-100 MHz DC blocking capacitor: 10 NF Repetition frequency: variable Rise time of one pulse: 5 ns +/- 30 % Impulse Duration: 50 ns +/- 30% Power source synchronism condition: Asynchronous Burst Duration: 15 ms +/- 20%

#### 3.4 COUPLING DECOUPLING NETWORK CHARACTERISTICS:

Frequency Range: 1 to 100 MHz Coupling Capacitors: 33 NF Decoupling attenuation in the non-symmetrical condition: >20dB Cross talk attenuation in network between lines: >30 dB Insulation withstand of coupling capacitors: 5 kV (1.2/50uS)

#### 3.5 COUPLING CLAMP CHARACTERISTICS:

Typical coupling capacitance: 50-200 puff Usable diameter range of round cables: 4-40 mm Insulation withstand voltage: 5 KV

#### 3.6 GROUND REFERENCE PLANE:

The ground reference plane is greater than 1x1 meter and allows at least 10 cm of excess dimension beyond the longest dimension of the EUT. The EUT is put on a wooden support approximately 80 cm. above the ground reference plane. A very short strap of negligible inductance (#2 AWG braided cable) and resistance couples the EFT to the GRP. All other structures that were conductive were at least .5 meter from the EUT per standard.

#### 3.7 REFERENCE DOCUMENT:

The reference document that defines the scope of the investigation, specific details, acceptability of test methods and results, techniques and construction details, as required, may be found in:

EN 61000-4-4, Second Edition, 2004 entitled "Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test- Section 4: Electrical fast transient/burst immunity test, Basic EMC Publication" and successors

#### 3.8 ACCEPTABILITY CRITERION:

The following criterion was established to determine the compliance of the EUT to the test regimen:

An unacceptable operating response to the stimulus was:

- 1) Any variation in a displayed character on a front panel display
- 2) Any permanent cessation of communication or adverse effect noticeable as a result of the application of EFT pulses
- 3) Any response of any kind that required an operator intervention to reset or recontrol the device to resume normal operation
- 4) Damage to the EUT such that it would be rendered inoperable or operate outside the manufacturer's specifications

A small variation in light intensity of a display or a small variation in a displayed operating parameter in response to the applied stimulus is considered acceptable if it is within the normal operating tolerances of the instrument.

### 4.0 <u>TEST RESULTS</u>

The TFT EP0406 was tested at .5, 1 KV and 2 KV suing the Haefely injection clamp from the battery and RS485 lines feeding the main control box. There was no noticeable change in operation during the test. The TFT EP0406 was also tested using direct injection from the EFT generator, no adverse operation was seen. A resistive termination was put on the communication line for this test.

Midwest EMI Associates Test Services Standard Test Report 2955 Ref: IFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc



21234 West Commercial Driv Mundelein, Illinois 60060	/e	•								
ation Number 61000-4-4 Standard 61000-4-4, F	PART 4, 2ND EDIT	ion, 2004								
MANUFACTURER:TFTTEST ENGINEER INITIALS: M.S										
EST: BIV-VUM	DATE OF TEST	10/31/09								
Model #: Serial #:										
65.9 HUN	1101TY LEVEL: <u>32</u>	4%								
APPLIED BURST LEVEL: .5 KILOVOLT (TEST SEVERITY LEVEL 1) REPETITION FREQUENCY: 5 KILOHERTZ AC ADAPTER TYPE: (TWO) (THREE) TERMINAL BURST DURATION: 15 MSEC BURST PERIOD: 300 MSEC TEST DURATION: 120 SECONDS POWER INPUT: (120 VAC / 60 Hz) (230VAC / 50 Hz) OR BATTERY VOLTAGE: 12.5 V INSTRUMENT SETUP/NOMINAL CONDITIONS: Cypling Open and Classed										
		RVATIONS MINUS								
H RESPECT TO THE GRP	V									
WITH RESPECT TO THE GRP	~									
H RESPECT TO THE GRP										
RAL WITH RESPECT TO THE GRP										
WITH RESPECT TO THE GRP										
PE WITH RESPECT TO THE GRP										
D PE WITH RESPECT TO THE GRP										
	CATES DEVICE MALFUNCT	TIONED								
NCY: 5 KILOHERTZ AC ADAPTE I 5 Msec BURS I 20 Seconds	TYPE: WO' THREE									
DE OF APPEARANCE	PLUS OBSER	RVATIONS MINUS								
DE OF APPEARANCE H RESPECT TO THE GRP		RVATIONS MINUS								
	· · · · · · · · · · · · · · · · · · ·	RVATIONS MINUS								
H RESPECT TO THE GRP	V									
H RESPECT TO THE GRP	V									
H RESPECT TO THE GRP WITH RESPECT TO THE GRP H RESPECT TO THE GRP	V									
H RESPECT TO THE GRP WITH RESPECT TO THE GRP H RESPECT TO THE GRP RAL WITH RESPECT TO THE GRP	V									
	STANDARD 61000-4-4, F N 4. ELECTRICAL FAST TRAI $\frac{T/FT}{}$ EST: $BIV - VUM$ $\frac{65.9}{}$ HUN VEL: .5 KILOVOLT (TEST SEVERIT ENCY: 5 KILOHERTZ AC A I 5 MSEC BURS I 20 SECONDS 20 VAC / 60 Hz) (230VAC / 50 H /NOMINAL CONDITIONS: Cycle DE OF APPEARANCE TH RESPECT TO THE GRP H RESPECT TO THE GRP H RESPECT TO THE GRP RAL WITH RESPECT TO THE GRP E WITH RESPECT TO THE GRP PE WITH RESPECT TO THE GRP PE WITH RESPECT TO THE GRP ND PE WITH RESPECT TO THE GRP ND PE WITH RESPECT TO THE GRP VEL: I KILOVOLT (TEST SEVERITY NCY: 5 KILOHERTZ AC ADAPTE I 5 MSEC BURS I 20 SECONDS 0 VAC / 60 Hz) (230VAC / 50 Hz	EST: <u>BTV-VVM</u> DATE OF TEST SERIAL #: <u>65.9</u> HUMIDITY LEVEL: <u>37.</u> VEL: .5 KILOVOLT (TEST SEVERITY LEVEL 1) ENCY: 5 KILOHERTZ AC ADAPTER TYPE: (TWO) I 5 MSEC BURST PERIOD: 300 MSEC I 20 SECONDS 20 VAC / 60 Hz) (230VAC / 50 Hz) OR BATTERY VOLTA (NOMINAL CONDITIONS: <u>Cycling Open ond</u> DE OF APPEARANCE PLUS OBSEF TH RESPECT TO THE GRP H RESPECT TO THE GRP KITH RESPECT TO THE GRP RAL WITH RESPECT TO THE GRP WITH RESPECT TO THE GRP WITH RESPECT TO THE GRP DE WITH RESPECT TO THE GRP VEL: I KILOVOLT (TEST SEVERITY LEVEL 2) ENCY: 5 KILOHERTZ AC ADAPTER TYPE: (MO) (THREE I 5 MSEC BURST PERIOD: 300 MSEC I 20 SECONDS O VAC / 60 Hz) (230VAC / 50 Hz) OR BATTERY VOLTAG								

i

.

.

.

•

	Midwest EMI Associates 21234 West Commercial Drive Mundelein, Illinois 60060							
BRITISH S	TION NUMBER 1000-4- TANDARD 61000-4-4, 4. Electrical Fast Tr	PART 4, F	IRST ED	тон, 2	000			
MANUFACTURER:								
Equipment Under Test: BIV-VUM Date of Test: 10/31/09								
				• •				
	55.9 Hum							
REPETITION FREQUENC BURST DURATION: TEST DURATION: POWER INPUT: (12	L: 2 KILOVOLT (TEST S CY: 5 KILOHERTZ AC A I 5 MSEC BURS I 20 SECONDS O VAC / 60 Hz) (230VAC / 5 OMINAL CONDITIONS: <u>C) CL 2</u>	DAPTER TYPE 5T PERIOD: 300 50 Hz) OR BA	: (TWO) (1 O Msec TTERY VOL	THREE) TEF				
MODE	OF APPEARANCE	MINUS	OBSERV	ATIONS	PLUS			
NEUTRAL WITH	H RESPECT TO THE GRP	V		/				
LINE WITH F	RESPECT TO THE GRP	V		V				
PE with R	ESPECT TO THE GRP	$\checkmark$		V				
NEUTRAL AND LINE	WITH RESPECT TO THE GRP	V		V				
LINE AND PE W	TH RESPECT TO THE GRP	V		/				
NEUTRAL AND PE	WITH RESPECT TO THE GRP	V		/				
NEUTRAL, LINE AND	PE wITH RESPECT TO THE GRP	V		V				
APPLIED BURST LEVEL REPETITION FREQUENC BURST DURATION: TEST DURATION: •	L: 4 KILOVOLT (TEST S CY: 2.5 KILOHERTZ AC I 5 MSEC BURS	EVERITY L ADAPTER TY ST PERIOD: 30	EVEL 4) PE: (TWO) O Msec	(THREE) T				
	OVAC / 60 Hz) (230VAC / 50							
INSTRUMENT SETUP/N	VAC / 60 Hz) (230VAC / 50		OBSERV	ATIONS	PLUS			
INSTRUMENT SETUP/N	) VAC / 60 Hz) (230VAC / 50 OMINAL CONDITIONS:		OBSERV	ATIONS	PLUS			
INSTRUMENT SETUP/N MODE NEUTRAL WITH	VAC / 60 Hz) (230VAC / 50 OMINAL CONDITIONS:		OBSERV	ATIONS	PLUS			
INSTRUMENT SETUP/N MODE Neutral with Line with r	VAC / 60 Hz) (230VAC / 50 OMINAL CONDITIONS: OF APPEARANCE H RESPECT TO THE GRP		OBSERV	ATIONS	PLUS			
INSTRUMENT SETUP/N MODE NEUTRAL WITH LINE WITH R PE WITH R	VAC / 60 Hz) (230VAC / 50 OMINAL CONDITIONS: OF APPEARANCE H RESPECT TO THE GRP RESPECT TO THE GRP		OBSERV	ATIONS	PLUS			
INSTRUMENT SETUP/NO MODE NEUTRAL WITH LINE WITH R PE WITH R NEUTRAL AND LINE	VAC / 60 Hz) (230VAC / 50 OMINAL CONDITIONS: OF APPEARANCE H RESPECT TO THE GRP RESPECT TO THE GRP		OBSERV	ATIONS	PLUS			
INSTRUMENT SETUP/N MODE NEUTRAL WITH LINE WITH R PE WITH R NEUTRAL AND LINE LINE AND PE W	VAC / 60 Hz) (230VAC / 50 OMINAL CONDITIONS: OF APPEARANCE H RESPECT TO THE GRP RESPECT TO THE GRP RESPECT TO THE GRP		OBSERV	ATIONS	PLUS			

	Midwest EMI Associates 21234 West Commercial Drive Mundelein, Illinois 60060								
	IEC PUBLICATION NUMBER 61000-4-4 British Standard 61000-4-4, F Section 4. Electrical Fast Tran	PART 4, 2ND EDITION, 2004							
	MANUFACTURER: TFT	TEST ENGINEER INITIALS:							
	EQUIPMENT UNDER TEST: TPT: VAlue Mother								
		SERIAL #: MB+CAN=V2; interface= V1							
F	TEMPERATURE: 65.6 HUN	NDITY LEVEL: 55.0							
	•	DAPTER TYPE: (TWO) (THREE) TERMINAL							
	INSTRUMENT SETUP/NOMINAL CONDITIONS: RUNAL	No 185 open/close routime							
~ C	MODE OF APPEARANCE	(PLUS) OBSERVATIONS (MINUS							
()	NEUTRAL WITH RESPECT TO THE GRP								
	PE WITH RESPECT TO THE GRP								
シー	LINE AND NEUTRAL WITH RESPECT TO THE GRP								
	LINE AND PE WITH RESPECT TO THE GRP								
$\mathcal{O}$	NEUTRAL AND PE WITH RESPECT TO THE GRP								
15	NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP								
F	* FAILURE MODE WAS: PASS NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDI	CATES DEVICE MALFUNCTIONED							
$\mathbf{X}$	•••	ER TYPE: (TWO) (THREE) TERMINAL ST PERIOD: 300 MSEC							
$\langle 0 \rangle$	INSTRUMENT SETUP/NOMINAL CONDITIONS: RUNN	ing 185 open/close routine							
$\Box$	MODE OF APPEARANCE	PLUS OBSERVATIONS (MINUS)							
I A	LINE WITH RESPECT TO THE GRP								
	NEUTRAL WITH RESPECT TO THE GRP	à.							
()	PE WITH RESPECT TO THE GRP	•							
$\mathcal{V}$	LINE AND NEUTRAL WITH RESPECT TO THE GRP								
	LINE AND PE WITH RESPECT TO THE GRP								
	NEUTRAL AND PE WITH RESPECT TO THE GRP								
	NEUTRAL, LINE AND PE WITH RESPECT TO THE GRP	:							
	* FAILURE MODE WAS: PASS NUMBER "I" INDICATES NO FAILURE WAS OBSERVED, * INDI	CATES DEVICE MALFUNCTIONED							

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc



# APPENDIX D

# RADIATED RADIO FREQUENCY INTERFERENCE SUSCEPTIBILITY TEST

(EN 61000-4-3, EN 1000-4-3, RS03 and successors)

# 1.0 **PURPOSE:**

The purpose of this test is to insure that commercial devices will not be susceptible to radiated electric fields. The frequency range tested is 10 KHz to 1 GHz nominally or higher for specific tests. The applicable standards are EN 61000-4-3, EN 1000-4-3 and Military Standard 461C Part 4, RS03 test.

# 2.0 DESCRIPTION OF TEST APPARATUS:

For this test, the TEK2756P Spectrum Analyzer may be used as a monitoring device with a biconical or conical antenna, and the Amplifier Research FM1000/FP1000 receiving system (optically isolated interface) is used for sensing purposes The two FP1000 and one FP2031 RF field probes are linked by an optical fiber cable outside the screen room for the purpose of closed loop control. The field is created using one of three different antennas with an amplifier such as the Model 2100L (lowband), ENI Model 525LA (midband), or Eaton Model 15100B (highband). The IEC test in two bands covers 27 MHz to 1000 MHz however the actual test range covered was 30 MHz to 1 GHz.

# 3.0 <u>TEST PROCEDURES:</u>

### 3.1 POWER LEADS & CABLE PLACEMENT:

The TFT BIV/VUM VALVE CONTROLLER (EP0406) was powered by a 12 VDC lead acid battery.

### 3.2 TEST SETUP:

The E.U.T. was placed on top of a nonconducting table at a .8 meter height. A closed circuit camera was positioned in front of the pressure monitor to check for variations in speed or pressure in the tube. Three isotropic probes (See picture at end of appendices) were placed in close proximity to the sides of the unit. The EUT was exposed to an elevated RF input level on one face which was the rear face of the unit. To accommodate EN 61000-4-3 as much as possible the antennas were adjusted to a 2 meter distance from the sample.

The computer program automatically cycles the isotropic probe through X, Y and Z polarizations, takes readings from three isotropic probes, averages the probe field strengths and applies correction to maintain the field strength at the sponsor group's requested value. This is done by turning <u>off</u> the modulation while the probe is being measured and then turning the modulation on for a variable amount of time. This permits accurate field strength measurement even though the modulation rate is low. In this case the modulation was turned on for 6 seconds per point.

### 3.3 MODULATION:

The modulation applied externally to the Wavetek 2520A was a 1000 Hz sinusoid which was used to generate an 80% AM signal which is consistent with EN 61000-4-3.

### 3.4 ANTENNAS AND AMPLIFIERS:

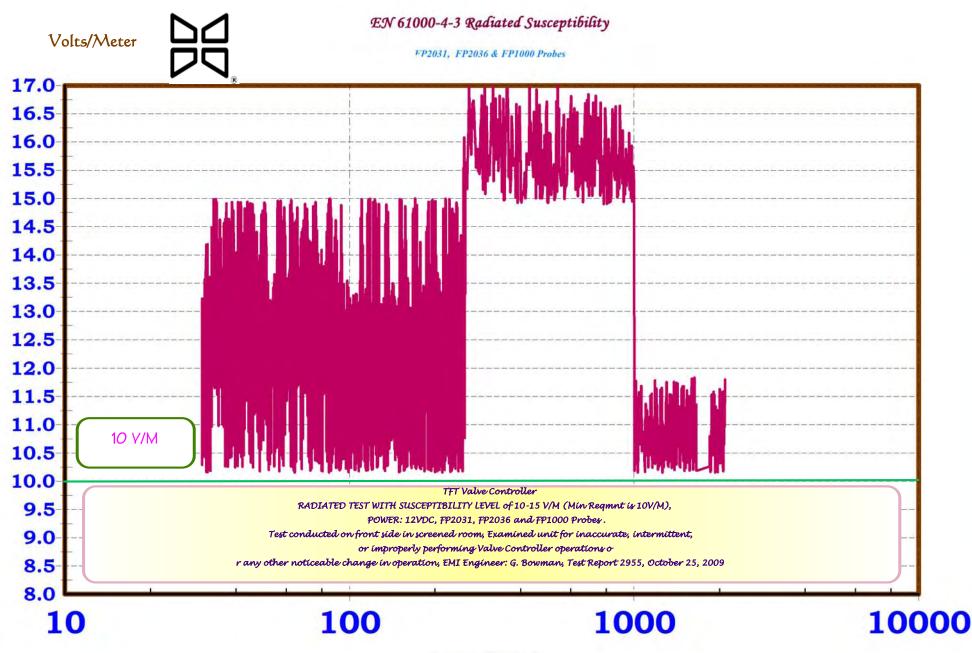
The radiating antennas/amplifiers used during the test were:

- a) The EMCO Model 3107B Power E field antenna from 10 KHz to 50 MHz, horizontal polarization only,
- b) The Antenna Research LPB 2520 Biconilog antenna from 50 MHz-1000 MHz, horizontal and vertical polarization,
- c) Power amplifiers were used to drive all antennas. In the low band test (where applicable), the 100 Watt ENI Model 2100L was used from 10 KHz- 12 MHz. In the mid-band test that can range from 1-520 MHz or 12-520 MHz, a 25 Watt linear ENI model 525LA was used. From 500 1000 MHz a 15 watt linear amplifier Eaton Model 15100B was used.
- d) Sweep rate of amplifiers was adjusted so that the rate did not exceed 1.5 x 10⁻³ decades/second and the step size never exceeded the 1% change limit of EN 61000-4-3. The rate was adjusted to approximately 100-1000 KHz per step every 3 seconds and the sweep was continuous between steps. Polarization was horizontal and vertical when the Biconilog was used.

### 4.0 <u>LIMITS AND RESULTS OF TEST</u>:

#### 4.1 RADIATED LIMITS:

The radiated susceptibility immunity should not be lower than 3 or 10 V/M as prescribed by EN 61000-4-3. The IEC range is 80 MHz to 1000 MHz. A graph is shown of the actual averaged field strength presented to the prototype during the test.


### 4.2 <u>RESULTS OF TEST</u>:

The TFT EP0406 was exposed to a 10 V/M immunity wave from 30 to 1000 MHz with 1000 Hz, 80% modulation. It was also exposed to the same field in the 900 to 925 MHz cellular phone test using 200 Hz, 100% square wave modulation. It was also tested from 1000-2700 MHz at user selected bands without noticeable problems.

During testing the system was continuously monitored for correct functioning so that a) the valve opened and closed at the normal rate and 2) did not stop or change it normal operation. Around 157 MHz some changes were needed to prevent valve stoppage, the changes were successful and the EUT passed.

# Radiated Immunity Test





Frequency (Megahertz)



Midwest EMI Associates Radiated Susceptibility Worksheet Page / of 3

D	ate: 9-	<u> 30-09</u>	Report:	<u> </u>	Test Engine	er: D()
It	tem Tested:				Model	
P	roject: 7	FT	Group:			Power: /2 V (AC) (DC), Hz
	est Perform	ned:	Probes: (CS1)	4) (Fischer (	CDN) (CLA	
6	Radiated)	Conducted)	A/R FP2031,	AR FP 2036.	AR FP1000	Cell Phone Test, 200 Hz 100% AM Square Wave)
0	Magnetic) (	C\$114)	(Other:	· · · · · · · · · · · · · · · · · · ·		_) Modulation Depth: (50%) (80%)) (%)
	<u> </u>	(HP8756A)	Orientation: (	-	·	) Room Position (Screenroom) (2 Mtr Site)
	Wavetek 25	20A)	(Wooden Tab	e) ) (Copper	Table) (Fl	oor) (5 Mtr Site) (Outdoors) Fir Pos: (A) (B) (C)
		Biconical EMCO Increment	3109, C=Conical E Immunity	MCO 3101, E=E	EMCO3107B, La Antenna	=EMCO 3147, CDN=Fischer FCC-801 CDN, or Solar 9108-1N & 91421-1N Results: (Include any Failure Modes Observed in the EUT),
4	requency M=MHz K=KHz)	Frequency (KHz)	Level: (V) (V/M)	Time: (Sec)	Antenna Type: B,C,L,CDN	Video Camera System Used: (Yes) (No)
	30	190	10	7	B	Start Herizontal 30-500MI
۷)	500	11	11	/1	11	Completed Horizowtal
						*changed ANTENNA AXIX to Vort
	30	1%	10	7	B	Start Vertical 30-500M
Ľ	57.53	n	и	ĸ	11	VAlue stopped open; proceed position
	1			<u> </u>		ON; reboot system
<u>/</u>	50	190	10	1	B	restant Vertical
2	55.75	- 10	/(	/1	17	tAllure repertable; value open; NO
						end position LED on; reboot system
Ľ	50	1%	10	7	B	restart Vertical 160-500
4	500	1(	/ c ·	10	11	ComPleted Vertical 30-50
						* Changed Amplitree
9	00	1%	10	7	B	Start Vertical 500-1000M
Ζ	000	/(	1(	11	10	Vertical Completed
			·			K ChANged ANTENNA AXIS
5	570	1020	10	7	B	Start Horizontal 500-1000
<u>]</u>	000	11	11	11	11	Horizontal Completed
Ļ	0.00	10-	15		77	* changed Amplifrer
	000	1%	10	7	B	Start Horizontal 1G-1.46
Ľ	400	11		· (		Completed Horizontal
_					<u> </u>	* changed Antenna Axis
	Notes:		1		<u> </u>	

_....

:



Midwest EMI Associates Radiated Susceptibility Worksheet Page 2 of 3

:

					Form: MID-RAD 2-25-2007
Date: 9-3	0-09	Report:		Test Engine	er: AW
Item Tested:				Model	FP0406 SN:
Project:	TFT	Group:			Power: /2 V (AC) (DC), Hz
Test Perfor	med:	Probes: (CS11	4) (Fischer (	CDN) (CLA	
(Radiated)	(Conducted)	(A/R FP2031, /	AR FP 2036.	AR FP1000	
(Magnetic)	(CS114)	(Other:		,	) Modulation Depth: (50%) (80%) (%)
Signal Gen.	: (HP8756A)	Orientation: (H	Pole Stand)	(Other:	) Room Positions (Screenroom) (2 Mtr Site)
(Wavetek 2	520A)	(Wooden Table	eD(Copper	Table) (Fl	oor) (5 Mtr Site) (Outdoors) Flr Pos: (A) (B) (C)
Antennas: B	Biconical EMCO	3109, C=Conical El	VCO 3101, E=1	EMCO3107B, L:	=EMCO 3147, CDN=Fischer FCC-801 CDN, or Solar 9108-1N & 91421-1N
Frequency	Increment	Immunity	Dwell	Antenna	Results: (Include any Failure Modes Observed in the EUT),
(M=MHz) (K=KHz)	Frequency (KHz)	Level: (V) V/MD	Time: (Sec)	Type: B,C,L,CDN	Video Camera System Used: (Yes)
1000	190	10	7	B	Stort Vectical 1G-1.4G
ILLOO	11	k	1(	1(	Candalad Varial
1700			· · · ·		Completed Vid Victor
1400	190	B:104,5	7	B	Start Vertical 1.46-2.0G
2000	u	11	U	71	Completed Vertical
					* Changed Antenna Axi's H
1400	1970	4.5	7	B	Start Horizontal 1.46-2.06
2000	И	И	1(	4	Completed Horizontal
					* changed to Horn Antenna + da
2000	1%	1.5	7	Horn	Start Vertical 2.0G-2.7G
2700	11	10	· le	10	Completed Vertical
					+ changed antenna axis
2000	190	1.5	7	Horn	Start Horizoutal 2.06-2.76
2700	- t c	/(	1(	11	Completed Horizontal
					*
				<b>.</b>	
· · · · · · · · · · · · · · · · ·					
		i	•	<b> </b>	
				· · ·	



Midwest EMI Associates Radiated Susceptibility Worksheet Page of 3

					Form: MID-RAD 2-25-2007
Date: 10-	-1-09	Report:		Test Engine	eer: Dew
Item Tested:		·		Model:	FROMO
Project:	TET	Group:			Power: 12 V (AC) 00 Hz
Test Perform	med:	Probes: (CS11	14) (Fischer (	CDN) (CLA)	
	(Conducted)	(A/R FP2031, /			(Cell Phone Test, 200 Hz 100% AM Square Wave)
(Magnetic) (		(Other:			) Modulation Depth: (50%) (80%) (%)
	: (HP8756A)			• •	) Room Position (Screenroom) (2 Mtr Site)
Wavetek 25		(Wooden Table	- ; •		
		0 3109, C=Conical Ef	EMCO 3101, E=E	EMCO3107B, L=	=EMCO 3147, CDN=Fischer FCC-801 CDN, or Solar 9108-1N & 91421-1N Results: (Include any Failure Modes Observed in the EUT),
M=MHz	Frequency	Level:	Time:	Type:	
(K=KHz)	(KHz)	(V) (V/M)	(Sec)	B,C,L,CDN	Video Camera System Used: (Yes) (No)
145	190	10	B	B	Start Vertical 145-165M
	[!		· · · ·	<u> </u>	(revisit 155M FAilure on 9/30)
155.43	11	11	11	11	Value stuck open; No stop LED
!	Í	dod	or off	$\rightarrow$	1.7; SAME couch from AS on 1/30
	L	Der"-	J. Jest	*	changed ISO probe positions (picture
!		191-10.	Ľ	<u> </u>	between #2 And #3; re-run test
145	1 %	10	B	B	Start Vertical 145-165M
165	//	11	11	n	Completed Vertical.
J	L'	ļ'	<u>                                     </u>	<u> </u>	*re-Run "deflector off" error
145	1%	10	8	B	Start Vertical 145-165 M (original
165	/1	11	· /t	11	Completed Vertical - PASS
	<b> </b> '	<b> </b> '	<u> </u> '	<u> '</u>	* Added "CAN" cover; re.run (pic)
145	1%	10	8	B	Start Vertical
165	11	11	11	11	Completed Vertical - PASS
J	Ĺ'	· · ·	<u> </u>	[!	* removed cover; re-run @ 13 V/M
145	190	13	8	B	SHART VERTICAL 145-165M
156.41		11	11	11	VALVE Stuck open; NO stop LED lit
i l	<b> </b> '	<b></b> '	<b></b> '	<b> </b> '	10V/M right@threshold for 155M
J	<b>۱</b> ــــــــــــــــــــــــــــــــــــ	ļ'	<b></b> '		* replaced CAN cover on motor; rem
145	1%	/3	8	$ \mathcal{B} $	Start Vertical 145-165M
165	11	h	11	11	Completed Vertical - PASS
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Notes:	2 -	L MAGE	11	- 11/m	Gaile 13111m under sume

Retest passes 10 V/M; tails 13 V/M under same dition (cover off on Motor/Valve). Possible threshold tolerance condition issue?

# APPENDIX E



# ELECTRICAL SURGE IMMUNITY TEST

(IEC 61000-4-5, First Edition, 1995 and successors)

## 1.0 **PURPOSE:**

The purpose of this test is to insure that commercial or medical devices will not be susceptible to electrical surges applied to their input AC or DC leads. This investigation evaluated the immunity of the EUT to controlled high-energy transients on the power or peripheral cable input lines. The open circuit voltage ranges from .2 to 4.2 kV with a 1.2 / 50 us waveshape and the short circuit current ranges up to 2.1 kA with an 8 / 20 uS waveshape. The surge simulates lightning pulses in the proximity of the mains supplying power to the EUT. The applicable standard is the European EN 61000-4-5 regimen.

## 2.0 DESCRIPTION OF TEST APPARATUS:

The test apparatus for this test consists of the Haefely Psurge 4010 with attendant cables and adapters. The general configuration of the test unit is described in the following test report.

# 3.0 TEST PROCEDURES:

### 3.1 POWER LEADS:

Application of the surge generator to the EUT was performed with the power input cable routed horizontally, from the surge generator to the EUT. Power was applied through the line and neutral leads of the surge generator that included an internal coupler/decoupler mechanism. The power leads were less than two meters as required. If longer ones are supplied by the manufacturer and are not detachable the excess is gathered into a flat coil with a .4 meter diameter and situated at a distance of .1 meter above the ground reference plane. Where an IEC connector is used a < 2 meter cable is supplied.

### 3.2 POLARITY and TEST LEVELS:

The surge wave was applied in the following modes of operation:

- 1) Line with respect to the Protective Earth
- 2) Neutral with respect to the Protective Earth
- 3) Between Line and Neutral with respect to the GRP

Tests were performed for the following surge voltage levels, repetition rates, period and duration, for synchronous triggering with respect to the AC line input:

#### Midwest EMI Associates Test Services Standard Test Report 2955

#### Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

LEVEL	OPEN CIRCUIT OUTPUT TEST VOLTAGE	REPETITION RATE of Pulse	Pulse Synchronism (Degrees)	Mode Supplied
1	.5 KV	30 Sec	0,90,180,270	1,2,3
2	1 KV	30 Sec	0,90,180,270	1,2,3
3	2 KV	45 Sec	0,90,180,270	1,2

#### 3.3 EFT GENERATOR CHARACTERISTICS:

Per standard and generator specifications the following are the surge characteristics:

Open Circuit Voltage: Programmable .2 to 4.2 KV, 1.2 / 50 uS Short Circuit Current: up to 2.1 Kilo Amperes Polarity: Positive/Negative Repetition Rate: up to 6 impulses/Minute at Umax or 12 at 2.2 KV/Min. Max EUT current: 16 amps Repetition frequency: variable Electronic Overcurrent: 0-16 Amps Impulse Measurement Accuracy: Voltage and Current +/- 3%

#### 3.4 COUPLING DECOUPLING NETWORK CHARACTERISTICS:

Coupling Capacitors: 18 uF

#### 3.5 QUALITY:

Meets the design and manufacturing requirements of ISO 9001

#### 3.6 GROUND REFERENCE PLANE:

The ground reference plane is greater than 1x1 meter and allows at least 10 cm of excess dimension beyond the longest dimension of the EUT. The EUT is put on a wooden support approximately 10 cm. above the ground reference plane. In alternate configurations the EUT may be placed on a table adjacent to the 1x1 meter plane and above a 3 meter plane of the radiated emission test site.

#### 3.7 REFERENCE DOCUMENT:

The reference document that defines the scope of the investigation, specific details, acceptability of test methods and results, techniques and construction details, as required, may be found in:

IEC 61000-4-5, First Edition, 1995 entitled "Electromagnetic Compatibility, Part 4: Testing and Measurement Techniques - Section 4: Electrical fast transient/burst immunity test, Basic EMC Publication" and succeeding revisions.

#### 3.8 ACCEPTABILITY CRITERION:

The following criterion was established to determine the compliance of the EUT to the test regimen:

An unacceptable operating response to the stimulus was:

- 1) Any permanent variation in a displayed image
- 2) Any permanent variation in the normal operation of the device or permanent changes to the EUT.
- 3) Any response of any kind that required an operator intervention to reset or recontrol the device to resume normal operation.
- 4) Damage to the EUT such that it would be rendered inoperable or operate outside the manufacturer's specifications.

A small variation in light intensity of a display or a small variation in a displayed operating parameter in response to the applied stimulus is considered acceptable if it is within the normal operating tolerances of the instrument.

## 4.0 SURGE IMMUNITY TEST RESULTS:

The TFT EP0406 was tested on its DC leads in line to line mode at a 500 volt application in positive and negative polarities. The EUT experienced no anomalies with this application and passed the test.

### Midwest EMI Associates Test Services Standard Test Report 2955

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc



* Haefely Trench AG EMC Test Systems * Basel/Switzerland * * TEST PROTOCOL * * System: PSURGE 4010 * * P5KL1NPS Test: Start-Time: 11:21 * * Start-Date: 01.10.2009 * ****** * * * * U nom-Syncro Coup. Imp. * Info. * Path No. inal Angle U-peak I-peak * * ---------..... -----+175A * * +0.16kV +0.50kV L1-N 1 ----* * L1-N 2 +0.50kV ----+0.16kV +175A * * L1-N 3 +0.50kV ----+0.16kV +175A +0.50kV -----* * +0.16kV L1-N 4 +175A * * 5 +0.50kV +0.16kV +175A L1-N ----* * L1-N 6 +0.50kV -----+0.16kV +175A * L1-N 7 +0.50kV ----- +0.16kV +175A * * * L1-N 8 ----- +0.17kV +176A +0.50kV * * L1-N 9 ----+0.16kV +175A +0.50kV * * 10 L1-N +0.50kV ----+0.16kV +175A +0.16kV * L1-N 11 +0.50kV ----+175A * * * L1-N 12 +0.50kV ____ +0.16kV +175A * * L1-N 13 +0.50kV ----+0.16kV +175A * * 14 L1-N +0.50kV ----+0.16kV +175A * * L1-N 15 +0.50kV ----+0.16kV +175A * 16 * L1-N +0.50kV ----- +0.16kV +175A +0.50kV * * 17 L1-N ----- +0.16kV +175A * * L1-N 18 +0.50kV ----+0.16kV +175A * * L1-N 19 +0.50kV ----+0.16kV +175A * * L1-N 20 +0.50kV ----+0.16kV +175A * * 21 ----L1-N +0.50kV +0.16kV +175A * * L1-N 22 +0.50kV ----+0.16kV +175A * * L1-N 23 +0.50kV ----- +0.16kV +175A * * L1-N 24 +0.50kV +0.16kV +175A ----25 +0.16kV +175A * * L1-N +0.50kV ----* * ----- +0.16kV L1-N 26 +0.50kV +175A * * L1-N 27 +0.50kV ----- +0.16kV +175A +0.16kV * * L1-N 28 +0.50kV ----+175A * * L1-N 29 +0.50kV ----+0.16kV +175A * * 30 +175A L1-N +0.50kV ----+0.16kV * * L1-N 31 +0.50kV ----+0.16kV +175A * * L1-N 32 +0.50kV ----+0.16kV +175A * * 33 +0.16kV +175A L1-N +0.50kV ----* * L1-N 34 +0.50kV ----+0.16kV +175A * * +175A L1-N 35 +0.50kV ----+0.16kV * * +0.50kV +0.16kV +175A L1-N 36 ----* +175A * L1-N 37 +0.50kV ----+0.16kV +0.16kV * +175A L1-N 38 +0.50kV ----+0.16kV * +175A * L1-N 39 +0.50kV ----* * +0.50kV ----+0.17kV +175A L1-N 40 * * >>> Test passed. <<< * * * P5KL1NPS * Test: Stop-Time: 11:28 * * Stop-Date: 01.10.2009 *  * * Haefely Trench AG EMC Test Systems Basel/Switzerland TEST PROTOCOL * * PSURGE 4010 System: * Test: P5KL1NNE 01.10.2009 * Start-Date: Start-Time: 11:42 * *************** Combination Wave 1,2/50us;8/20us ****** * * * Syncro Coup. Imp. U nom-* Path No. inal Angle U-peak I-peak Info. * * _____ * L1-N 1 -0.50kV -----0.14kV -216A * * L1-N 2 -0.50kV -----0.14kV -216A * * 3 -0.50kV -----0.14kV -216A L1-N * -216A * L1-N 4 -0.50kV -----0.14kV * * 5 L1-N -0.50kV -----0.14kV -216A * * L1-N 6 -0.50kV -----0.14kV -216A * * 7 -0.14kV -216A L1-N -0.50kV ----* * L1-N 8 -0.50kV -----0.14kV -216A * * L1-N 9 -0.50kV -----0.14kV -216A * * L1-N 10 -0.50kV -----0.14kV -216A * * L1-N 11 -0.50kV -----0.14kV -216A * * 12 ----L1-N -0.50kV -0.14kV -216A * * L1-N 13 -0.50kV -----0.14kV -216A * * L1-N 14 -0.50kV -----0.14kV -216A * 15 -0.50kV -0.14kV L1-N -----216A * * L1-N 16 -0.50kV -----0.14kV -216A * * L1-N 17 -0.50kV -----0.14kV -216A * L1-N 18 -0.50kV -----0.14kV -216A * * * L1-N 19 -0.50kV -----0.14kV -216A * * L1-N 20 -0.50kV _____ -0.14kV -216A * * -216A L1-N 21 -0.50kV -----0.14kV * * -0.50kV -216A L1-N 22 -----0.14kV * * L1-N 23 -0.50kV -----0.14kV -216A * * L1-N 24 -0.50kV -----0.14kV -216A * * 25 -0.50kV -0.14kV -216A L1-N ----* * L1-N 26 -0.50kV -----0.14kV -216A * * L1-N 27 -0.50kV -----0.14kV -216A * 28 -0.50kV -----0.14kV -216A L1-N * -217A * L1-N 29 -0.50kV -----0.14kV * * L1-N -0.50kV -0.14kV 30 -----215A * * L1-N 31 -0.50kV -0.14kV -216A ----* * L1-N 32 -0.50kV -----0.14kV -216A * * L1-N 33 -0.50kV -----0.14kV -216A * * L1-N 34 -0.50kV -----0.14kV -216A * * L1-N 35 -0.50kV -----0.14kV -216A * * -0.50kV -216A L1-N 36 -----0.14kV * * 37 -0.14kV L1-N -0.50kV -----216A * * L1-N 38 -0.50kV -0.14kV -216A ----* * L1-N 39 -0.50kV -----0.14kV -216A ----* * -0.14kV L1-N 40 -0.50kV -216A * * >>> Test passed. <<< * * * * Test: P5KL1NNE 11:49 * * Stop-Time: Stop-Date: 01.10.2009 

# APPENDIX F



**CONDUCTED SUSCEPTIBILITY TEST** 

Common Mode Voltage Interference (Ref: EN 61000-4-6)

# 1.0 **PURPOSE:**

The purpose of this test is to insure that commercial or medical devices will not be susceptible to conducted RF energy when induced on peripheral cabling. The frequency range possible to be tested is 150 KHz-300 MHz. The required range is 150 KHz to 80 MHz. The applicable standard and test method is described in Euronorm standard EN 61000-4-6:2001.

# 2.0 DESCRIPTION OF TEST APPARATUS:

The test apparatus required is described in the reference includes a signal generator, amplifier, wideband directional coupler, several attenuators, a calibration fixture, a wideband coupling probe, a coaxial load, and two spectrum analyzers. The test also can be run with one spectrum analyzer provided the test is run twice exactly the same way. The test equipment actually used was (in the order above) a Wavetek 2520 generator, one amplifier which is the ENI 525LA (mid band), a Werlatone C1795 directional coupler, Bird Model 8306-200-Nxx 20 Watt power attenuators (3,10, and 20 dB), a Fischer IEC 801-6 CDN FCC-801-M3-25, and a Tektronix 2756P spectrum analyzer.

The test also requires analysis of data using a high speed computer and graphical presentation of data. The computer used was a USA Flex Advanta 50 MHz 486 controller with Quattro Pro for Windows and Word for Windows for tabular presentation. The test requires characterization of all components and a dedicated computer program to cycle the test equipment in a precise manner that induces required common mode currents in the EUT cables.

# 3.0 <u>TEST PROCEDURES:</u>

### 3.1 POWER LEADS:

The device tested was plugged into a source of 120VAC, 60Hz through two Line Impedance Stabilization Networks, Solar type 8028-50-TS-24-BNC. The AC cord was made physically as short as possible to permit maximum energy into the E.U.T.

#### 3.2 TEST SETUP:

The test setup complies with the relevant portions of the reference standard. The Wavetek signal generator runs a specific pattern of signal frequencies and amplitudes to cover the range of interest in such a way that the required levels are maintained very closely. The calibration step is performed prior to the EUT portion of the test using a reference load which consists of a 150 ohm to 50 ohm pad and other apparatus to calibrate the levels to 1, 3 and 10 V RMS. The monitor probe used in the test on the EUT was a Solar type 6741-1.

The test was performed inside of the screened room with the EUT on a metal table very close to the CDN which rested on a copper tabletop to provide optimum grounding and the flattest RF level possible to the EUT. The copper table is 80 cm. off the floor of the room.

#### 3.3 MODULATION:

The required 1000 Hz, 80% AM modulation signal was used.

#### 3.4 AMPLIFIERS USED:

The amplifiers used during the test were:

- a) The ENI 2100L from .15 to .3 MHz, 100 Watts
- b) The ENI 525LA from .3 MHz 400MHz, 25 Watts.

#### 3.5 TEST PROCEDURES:

A calibration step is first required to set the levels to be used in the test on the EUT. The Fischer CDN is first arranged with two coupling devices that effectively short the three outputs of the CDN together and also convert the desired 150-ohm impedance to 50 ohms. These special adapters are placed on the AE port and EUT port for terminations. The EUT port was additionally fitted with a 20-dB power pad leading to the spectrum analyzer that acted as a receiver. The power for the RF input of the CDN was generated by the Wavetek signal source through the ENI 525LA power amp along with 15 feet of RG214 cable and terminated in the RF port.

The signal levels were then iteratively adjusted so that the output level would always maintain at least the 3 or 10 V RMS requirement. It is important to note that the standard requires a 3 or 10 V RMS <u>open circuit</u> output into the EUT. For the 10 V RMS case, if a 50 ohm termination is used the true matched level is 5 V RMS. The resistive 150 to 50 ohm matching pad further reduces the level by a factor of 3 for an overall gain reduction of 6 times. This means the output leading to the spectrum analyzer is 1.67 volts (10/6). The addition of the 20 dB pad (to avoid any reflections) further reduces the amplitude to <u>.167 volts</u> which is the flat level that is needed to be maintained over the frequency range.

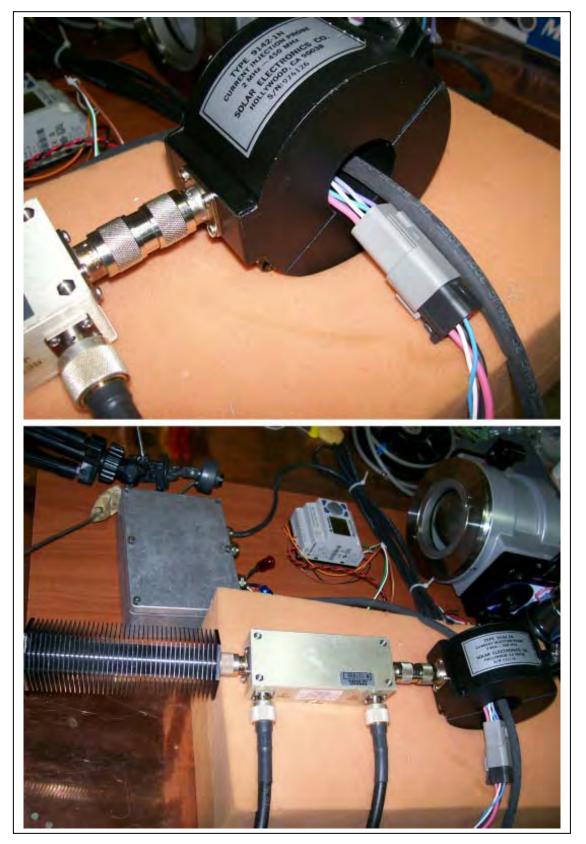
# 4.0 <u>LIMITS AND RESULTS OF TEST</u>:

### 4.1 CONDUCTED LIMITS:

The conducted immunity of the EUT must not be less than the level defined in the reference standard. The possible levels are 1, 3 or 10 V RMS. The dwell time to exercise the functions of the EUT was 3 seconds per point. The total number of points taken was 750 over the 150 KHz to 300 MHz range. The range <u>required to pass</u> for this test is only 150 KHz to 80 MHz. In the higher range of 80-300 MHz the dwell time was also 3 seconds.

### 4.2 **RESULTS OF TEST**

Testing on the TFT EP0406 was performed on the power leads going from the battery to the circuitry using the CDN. When the device was initially tested at the minimum 3 V RMS level it performed normally throughout the entire range of frequencies of .15 to 300 MHz. Since this is the required level and just the .15 to 80 Mhz range needs to be passed the device passed the test.


In a second test a Solar clamp was used on the cable of wires going from the communications cable and wires to the motor (that can be longer that 3

meters). (See sponsor group block diagram) and the test was rerun in the .15 to 300 MHz range. Again no adverse events were noted, the device continued to exercise a normal routine throughout the test.

The device passed the EN 61000-4-6 requirement at 3 and 10V RMS in either case without noticeable failures.

Midwest EMI Associates Test Services Standard Test Report 2955

Ref: TFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc



Page 34 of 38



Midwest EMI Associates Radiated Immunity Worksheet Page ____ of ____

/ <del>·····</del>		T			Ref: Radiated Immunity Master Sheet. doc		
Date: / 0 -	2-09	Report:		Test Engine	er: (George Bowman) (Phil Rajca) (Tester:		
Item Tested:	FP04	106 Moto	her box	/			
Project: TFT Group: Power: 12 V(AC)(DC) Hz							
Test Perfor	med:	Probes: (CS1	14) (Fische	r CDN)	Modulation: (2) (10) (100) (1000) Hz, Sine Wave		
(Radiated)	(Conducted))	(A/R FP2031)	(AR FP 2	036)	(Cell Phone Test, 200 Hz 100% AM Square Wave)		
(Magnetic)	(CS114)	(AR FP1000)	Other: Tr	- Probe	) Modulation Depth: (50%) (80%) (%)		
Signal Gen.	:(HP8756A)	Orientation: (	Pole Stand) (	Other:)	Place of Test. (Screenroom) (2 Mtr Site)		
Wavetek 2	520A)	(Wooden Tab	le) (Copper T	able) (Floor)			
Antennas: B	=Biconical EMC	CO 3109, C=Coni	cal EMCO 310	01, E=EMCO3	107B, L=EMCO 3147, CDN=Fischer CDN, CLMP=Bulk Cable Clamp		
Frequency	Increment	Immunity	Dwell	Antenna	Results: (Include any Failure Modes Observed in the EUT),		
(M=MHz) (K=KHz)	Frequency (KHz)	Level: (V) (V/M)	Time: (Sec)	Type: B,C,L	Video Camera System Used: (Yes)(No)		
		3	Pa	CLAMP			
	Perform		lan		ming ing HOK , Running normally		
2.5M	{		<b>├</b> ──		Fring up, ADK, Running normally Surtah Amps/louglers MDK		
15.5					no issues , ADK		
3113					1 11 11 PONES		
SOM					IL I II STAFES		
139M					11 11 11 11		
300M					10 10 14		
	41	<u>v</u>	¥	*			
		1.10					
_e/M_	Per Pam	_/ <i>B</i>	Pu Kan	CLAMP	Jaing Mp, ADK, Running normally		
2.5M	Pá Jan		Perkon	CLAMP	Surtch Amps, "		
27M					ADK, no Dannes		
SAM							
157M					POWER		
300m					p		
	<b>₩</b>	Ÿ	#				
*1M	Perfam		Ky Kam	CLAMP	Joing up, Aox, Running Normally		
2-5	11	)(			Justal Pomps, ADK. CONTROL		
300m	1(	1	6	7	ADK. LINES		
-							
=1M	Parlam	10	Perlam	CLAMP	Queria las ADK		
2.5	11	51	1 <b>~;;;;;;;;</b> ;		Joing up, APR Surtal Amon CONTROL		
150M	)/	11	24				
300 m	17	•1	11				
		· · · · · · · · · · · · · · · · · · ·		*	ADK		

Notes:

mit cycled moundly in all tests

# APPENDIX G

# **ELECTROSTATIC DISCHARGE TEST**

(EN 61000-4-2, Protocol MEMI-1)

# 1.0 **PURPOSE:**

The purpose of this test is to insure that commercial or medical devices will not be susceptible to electrostatic discharge transients applied to the case and circuitry. The device should show no degradation within 5 seconds of application. This also applies to application of charges to the horizontal and vertical coupling planes. The European directive mandates passing of the 8 kV air discharge in single shot mode and 4 kV contact discharge. The actual test was conducted at up to +/- 8KV air and 4 kV contact discharge.

# 2.0 DESCRIPTION OF TEST APPARATUS:

The Schaffner NSG 435 electrostatic gun is used. The device under test may be mounted on a table or pole clamp for testing. The gun meets EN 61000-4-2 test standard requirements.

All tests are done with the tip which best simulates a human finger. The modes that are selectable are 1) continuous mode, or 2) single shot mode. The gun also has positive or negative polarity settings.

# 3.0 <u>TEST PROCEDURES:</u>

### 3.1 POWER LEADS:

The **TFT BIV/VUM VALVE CONTROLLER (EP0406)** was powered by 12V DC battery.

### 3.2 TEST SETUP:

The EN 61000-4-2 directive specifies a horizontal and vertical coupling plane for testing packaged devices. The device was tested on the three-meter site and this formed the horizontal-coupling plane. It was placed on an 80-centimeter table above the ground plane.

The ESD gun was handheld and only one location on the ground screen was chosen for discharge that is located below the table. The ESD gun return lead was grounded to a terminal strip and the table that formed the reference earth potential.

### 3.3 TEST METHOD: Qualification Test (Single Shot Only)

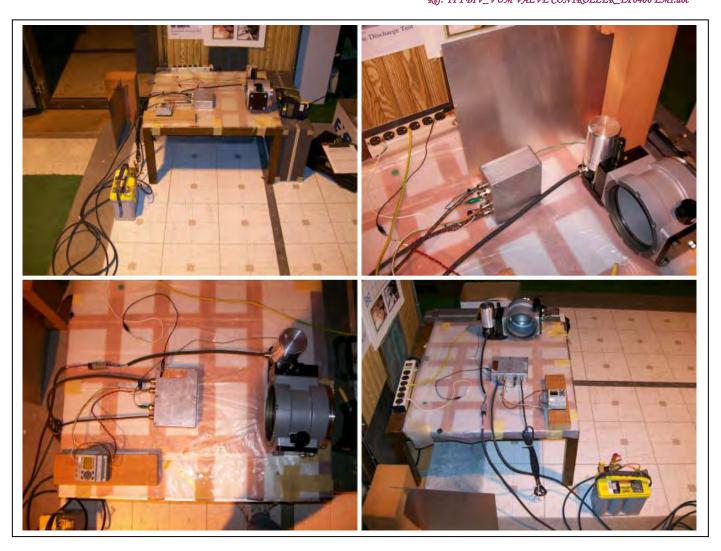
If single shot mode is utilized for qualification tests the operating conditions are the same as shown in paragraph 3.2. At each voltage which may also include the horizontal or vertical coupling plate, the position is struck 20 times at a 1 second succession in minus and plus polarity settings. After each increment of 20 shots, the next preselected point is tested. A recording of the degradations noted is made on the data sheets and supplementary notes are made as to the response of the test sample. Special attention is given to any failure modes that appear to be unsafe.

### 4.0 **RESULTS OF TEST (10-01-09) and (10-02-2009)**

The ESD test was conducted on 10 surfaces in areas showing cracks in the package, switches, connectors or screws. The EUT was only subjected to ESD intensity levels of 2, 4 and 6 KV in contact discharge. The display itself was not found to allow an arc into sensitive control lines, and the periphery of the display arced into metal.

The following symptoms were noted during the test: None The device performed flawlessly during testing.

The device was given an "A" acceptance rating.


### ${\it Ref: TFTBIV_VUM VALVE CONTROLLER_EP0406~EMI.doc}$

## ESD TEST LOCATIONS TFT BIV/VUM VALVE CONTROLLER (EP0406)

TEST POINT	Description
1	VCP
2	НСР
3	Valve Cable Fitting
4	Motor Housing (Valve)
5	Plastic Strip Groove (Valve)
6	Interface Case
7	CAN Bus Fitting
8	Power / Comm Fitting
9	Mounting Interface Holes
10	Case Seam (Interface)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

Note: Photograph of locations are attached

Midwest EMI Associates Test Services Standard Test Report 2955 Ref: IFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc



Data Sheet

ESD DATA SHEET Schaffner NSG 435 Gun Midwest EMI Associates Mundelein, Illinois Form: Issued 10/22/08 **MEMI-1A** 

 Sponsor Group: TFT
 Model Number: __FP0406, running 18s open/close routine Manager:_Tim Miller Temp: 66.5F Hum: 55.0 Technician: DW
 v.S/W: test code

 Date of Test: 10-01-09
 Time: 6:00 PM
 EUT: Prototype / Production
 Unit

 Placement of EUT: ESD Table _____ Pole Mount _____
 Wood Table ____ FLOOR _____

 Grounding: Pole____ Terminal Strip _____ FLOOR _____
 1 Meg to Metal Frame of EUT. _✔__

 Configuration: EUT power 12VDC battery. Copper tape w/1M res to ground on interface housing.

 Note: Instrument tested with 10 discharges (min) per level/polarity, Single Shot Mode as listed below (unless otherwise stated).

Defer	Reference: TEST POINT: VCP TEST POINT: 14CP												
EN 61000-4-2			DLARITY		OLARITY		DINT: DLARITY	MINUS POLARITY					
REF.	KILO VOLTS	AIR D/CHARGE	CONTACT MODE	Air D/CHARGE	CONTACT	Air D/CHARGE	CONTACT MODE	Air D/charge	CONTACT MODE				
1	1												
2	2	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)				
3	3												
4	4	(MA)		(NA)		(NA)		(NA)					
5	5												
6	6	(NA)				(F) NA)		(1) (NA)					
7	7												
8	8	(NA)	NT	(NA)	NT	(NA)	NT		NT				
9	9												
10	10												

Refe	rence:	TEST PC		Alve C	Able fit	TEST PC		ofor A	ausing
	000-4-2		DLARITY		OLARITY	PLUS POI	LARITY	MINUS P	OLARITY
REF. LINE	KILO VOLTS	AIR D/CHARGE	CONTACT MODE	Air D/charge	CONTACT MODE	AIR D/CHARGE		Air D/charge	CONTACT MODE
1	1								
2	2	(NA)	(NA)	(V) (NA)	(NA)	(NA)	(NA)	(NA)	(NA)
3	3								
4	4	(NA)		( <b>v</b> )(NA)		(NA)		(NA)	
5	5								
6	6	(1) (NA)		(MA)		(NA)		(NA)	
7	7			0					
8	8	(MA)	NT	(NA)	NT	(NA)	NT	(MA)	NT
9	9								
10	10								
							-		
Jotes	A Cheoler	nark (M) man	no the device	nanced the	test point ou		A Dhan (*)	•	<u> </u>

Notes: A Checkmark () means the device passed the test point successfully. A Star (*) means the device failed one of the shots. N/A means that the ESD gun did not discharge on the point indicated. NT means point not tested Notes: ______ No Errors This Page X Note: ______ Note: ______ A S S

Da	ta Sheet	ES Sch		<b>SHEET</b> 3 435 Gun	A	idwest E Associate lelein, Il	Form: lssued 10/22/08 MEMI-1A		
		Group: <u>T</u> r. Tim Mill		Model 66.5F H1	Number:	FP0406, r	unning 18	s open/clos S/W: test c	
	Date of	Test: 10-0	1-09 Time	: 6:00 PM	<b>EUT:</b> Prot	otype / Pro	duction	Unit	oue
				e✔_ Pole					
Config				l Strip ttery. Cop					
				charges (m					
		therwise st		(VAL	· - \				
Pafa	rence:	TEST PO	INT. DL	Stic Sti	60	TEST PC		Jonfa	e CA
	000-4-2		DLARITY		OLARITY		DLARITY		OLARITY
REF. LINE	KILO VOLTS	Air D/charge		Air D/charge	CONTACT MODE	AIR D/CHARGE	CONTACT MODE	Air D/charge	CONTACT MODE
1	1								
2	2	(V)(NA)	(VA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)
3	3	0					1		
4	4					(NA)		(NA)	
5	5								
6	6	(NA)		(NA)		(NA)	$\checkmark$		
7	7	) (							
8	8 (	(NA)	NT	(NA)	NT	(MA)	NT	(NA)	NT
9	9								
10	10								
				<u> </u>	ļ			<u> </u>	
Refe	rence:	TEST PC	DINT: C		ÌN3				m Fitti
	000-4-2		DLARITY	<u>maral s a r</u>	OLARITY		PLUS POLARITY		OLARITY
REF.	KILO VOLTS	AIR D/CHARGE	CONTACT MODE	AIR D/CHARGE	CONTACT MODE	AIR D/CHARGE	CONTACT MODE	Air D/charge	CONTACT MODE

Keie	rence:	TEST PC		N MAT	$\overline{\mathcal{M}}$	TEST POINT: POWER / Comm Fitte				
EN 61	000-4-2	PLUS PC	<u>DLARITY</u>	<u>MINUS P</u>	<b>OLARITY</b>	PLUS POI	LARITY	MINUS POLARITY		
REF. LINE	KILO VOLTS	Air D/charge	CONTACT MODE	Air D/charge	CONTACT MODE	Air D/charge	CONTACT MODE	Air D/charge	CONTACT MODE	
1	1									
2	2	(NA)	(NA)	(NA)	(NA)	( <b>N</b> A)		(NA)	(NA)	
3	3		1							
4	4	(NA)		(NA)				(NA)		
5	5				1		/			
6	6	(NA)		(NA)	$\overline{}$			(NA)		
7	7									
8	8	(NA)	NT	(V) (NA)	NT		NT		NT	
9	9			•						
10	10									
Notes:	A Checkr	nark (🖌) mea	ns the device	passed the	test point su	ccessfully.	A Star (*) me	ans the devic	e failed one o	

.

the shots. N/A means that the ESD gun did not discharge on the point indigated. NT means point not tested Notes:______No Errors This Page A____ Note:______

	Data Sheet       ESD DATA SHEET       Midwest EMI       Form: Issued 10/22/08         3 of       Schaffner NSG 435 Gun       Mundelein, Illinois       Form: Issued 10/22/08         Sponsor Group:       TFT       Model Number:FP0406, running 18s open/close routine												
		r Group: <u>T)</u> r: <u>Tim Mill</u>						<u>s open/clos</u> S/W: test c		1			
	Date of	Test: 10-0	L-09 Time	: 6:00 PM	<b>EUT:</b> Prot	otype / Pr	oduction	Unit	oue	-			
	Placemo	ent of EUT:	ESD Table	: _✔_ Pole	e Mount	Woo	od Table	FLOOR ame of EU					
Config								interface h					
Note:	Instrume	ent tested v	vith 10 dis	charges (m	in) per leve	el/polarity,	Single Sho	ot Mode as	listed				
Delow	unless of	therwise st	ated).	1 ZNH	er face					<u> </u>			
Reference: TEST POINT: Mounting Holes CASE TEST POINT: CASE SEAM Information													
	000-4-2	PLUS PC	DLARITY		OLARITY		OLARITY		OLARITY				
REF. LINE	KILO VOLTS	D/CHARGE	CONTACT Mode	Air D/charge	CONTACT MODE	AIR D/CHARGE	CONTACT	AIR D/CHARGE	CONTACT MODE	1			
1	1									1			
2	2	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)	(NA)				
3	3												
4	4	(NA)		(NA)		(NA)		(NA)					
5	5												
6	6	(•) (NA)		(NA)		(NA)		(NA)					
7	7												
8	8	(•) (NA)	NT	(NA)	NT	() NA)	NT	(NA)	NT	ľ			
9	9												
10	10												

ence:	TEST PO	INT:			TEST POINT:				
000-4-2	PLUS POLARITY		MINUS POLARITY		PLUS POI	ARITY	MINUS POLARITY		
KILO VOLTS	Air D/charge	CONTACT Mode	AIR D/CHARGE	CONTACT MODE	AIR D/CHARGE	CONTACT MODE	AIR D/CHARGE	CONTACT MODE	
1								-	
2	(🖌) (NA)	(🖌) (NA)	(🖌) (NA)	(🖌) (NA)	(🖌) (NA)	(🖌) (NA)	(🖌) (NA)	(🖌) (NA)	
3									
4	(🖌) (NA)		(🖌) (NA)		(🖌) (NA)		(🖌) (NA)		
5									
6	(🖌) (NA)		(🖌) (NA)		(🖌) (NA)		(🖌) (NA)		
7									
8	(🖌) (NA)	NT	(🖌) (NA)	NT	(🖌) (NA)	NT	(🖌) (NA)	NT	
9									
10									
	NOD-4-2           KILO           VOLTS           1           2           3           4           5           6           7           8           9	DOD-4-2         PLUS PC           KILO VOLTS         Air D/CHARGE           1         D/CHARGE           2         (*) (NA)           3         (*) (NA)           5         (*) (NA)           5         (*) (NA)           7         (*) (NA)           8         (*) (NA)           9	PLUS POLARITY           KILO VOLTS         Air D/CHARGE         CONTACT MODE           1	DUOD-4-2         PLUS POLARITY         MINUS P           KILO VOLTS         Air D/CHARGE         CONTACT MODE         Air D/CHARGE           1	DOD-4-2PLUS POLARITYMINUS POLARITYKILO VOLTSAir D/CHARGECONTACT MODEAir D/CHARGECONTACT MODEAir D/CHARGECONTACT MODE1IIID/CHARGECONTACT MODE2( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)3IIII4( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)5III6( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)I7III8( $\checkmark$ ) (NA)NT( $\checkmark$ ) (NA)NT9IIII	DOD-4-2PLUS POLARITYMINUS POLARITYPLUS POIKILO VOLTSAir D/CHARGECONTACT MODEAir D/CHARGEAir D/CHARGEAir D/CHARGE1IIIIID/CHARGECONTACT MODEAir D/CHARGE2( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)( $\checkmark$ ) (NA)3IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DOD-4-2PLUS POLARITYMINUS POLARITYPLUS POLARITYKILO VOLTSAir D/CHARGECONTACT MODEAir D/CHARGEAir CONTACT MODEAir 	D00-4-2PLUS POLARITYMINUS POLARITYPLUS POLARITYMINUS PKILO VOLTSAiR D/CHARGECONTACT MODEAiR D/CHARGECONTACT MODEAiR D/CHARGEAiR D/CHARGECONTACT MODEAiR D/CHARGEAiR D/CHARGECONTACT MODEAiR D/CHARGEAiR D/CHARGECONTACT MODEAiR D/CHARGEAiR D/CHARGECONTACT MODEAiR D/CHARGEAiR D/CHARGED/CHARGEAiR D/CHARGE11111111111112(V) (NA)(V) (NA)(V) (NA)(V) (NA)(V) (NA)(V) (NA)(V) (NA)111311(V) (NA)(V) (NA)(V) (NA)(V) (NA)(V) (NA)1111311(V) (NA)(V) (NA)(V) (NA)(V) (NA)(V) (NA)11114(V) (NA)1(V) (NA)(V) (NA)(V) (NA)(V) (NA)11111511(V) (NA)1(V) (NA)(V) (NA)111111111111111111111111111111111111111111111111111<	

Notes: A Checkmark () means the device passed the test point successfully. A Star (*) means the device failed one of the shots. N/A means that the ESD gun did not discharge on the point indicated. NT means point not tested Notes:______ No Errors This Page Note:_______ Note:_______



### **APPENDIX H**

AGNETIC SUSCEPTIBILITY FDA/EC M (EN 61000-4-8 Power Line Immunity Test, AAMI DF-39 METHOD)

#### 1.0 **PURPOSE:**

The purpose of this test is to insure that medical devices will not be susceptible to low frequency magnetic energy. This test is normally conducted only at 50 or 60 Hertz and with very high electromagnetic fields that could be experienced with heavy machinery or MRI machines. These tests are outlined in IEC EN 61000-4-8, FDA document MDS-201-0004 and Military Standard RS101. In the AAMI DF-39 method the frequency range is extended to 500 Hz encompassing all known power frequencies.

#### 2.0 **DESCRIPTION OF TEST APPARATUS:**

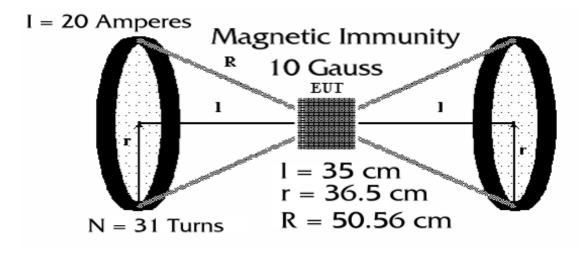
#### 2.1 **Test Method and Exceptions**

The test method for magnetic field susceptibility of MDS-201-0004 is listed in paragraph 4.3.4 subparagraph a) and specifies the Helmholtz coil must be larger than the maximum dimension of the test sample. In some cases, medical equipment is very large and the coils and power supply needed would be unmanageable from a floor volume and cost standpoint. Instead, as an exception, we use coils that create strong localized fields that are well in excess of the standard. The dimensions of the coils and all calculations are shown in the next section.

In performing the MDS specification at 50/60 Hz for large devices, the coils are held 80 cm apart and they are moved in a parallel plane up and down the device under test. The coils are properly phased with field aiding so that locally over all surfaces the field requirements are met. This is also done in all axes as specified in MDS-201-0004, paragraph 4.3.4.d.

#### 2.2 Loop Antenna Pair

The fabricated antennas for the 50/60 Hz test consist of two bundled coils of average diameter of 73 cm. with 31 turns of #12 AWG insulated, CSA approved standard copper wire. The bundled coil dimension is a 1.5" diameter. The coils are arranged on an axis so that they are parallel to each other and are 70 cm apart.


Using the "right hand" rule, the coils are phased so that the flux generated is aiding. The field generated by the coils is measured by the calibrated Holladay probe. The analysis below correlates the calculated field strength of the coils to the empirically measured field strength. The actual field is approximately twice as great by adding the flux generated by the two coils.

#### 2.3 **Calculations**

Given: Coil Diameter: 73 cm. Current: 20 amperes Coil Distance: 70 centimeters Number of turns: 31 turns

Midwest EMI Associates Test Services Standard Test Report 2955 Ref: IFT BIV_VUM VALVE CONTROLLER_EP0406 EMI.doc

Units: 1 Tesla = 10⁴ Gauss=3 x 10⁸ V/m=240 dBpT= 8 x10⁵ A/M  $\mu_{o} = .4\pi x 10^{-7} T m/A, 10 Gauss = 800 A/M$ 



Calculate: Field Strength (V/m) at point halfway between the coils.

Let: l = distance from each coil to midpoint, cmR = distance from midpoint to radius of coil, cmr = radius of coil, cm

 $\begin{aligned} \mathbf{R} &= \ \overline{/ \ l^2 + \mathbf{r}^2} = \overline{/ \ 35^2 + 36.5^2} &= 50.56 \text{ cm} \\ \mathbf{B} \text{ (Tesla)} &= .5 \ \mu_0 * \text{ I } * & \frac{\mathbf{r}^2}{\mathbf{R}^3} * \text{ N} \text{ , } \ \mu_0 = 4 \ \pi \text{ x } 10^{-7} \text{ T x } \text{ m/A} \\ \mathbf{I} &= 20 \text{ Amps RMS, } 60 \text{ Hz} \end{aligned}$ 

 $B (V/m) = 188.5 * I * \frac{r^2}{R^3} * N$  N = 25 Turns r = .5 m, R = .6403m

$$B(V/m) = 188.5 * 20 * (.35)^2 / (.5056)^3 * 31 = 110769 V/m$$

Since two coils are acting the field strength is about two times as great, or 221537 V/m, or equivalently, 227 dBuV/m.

**Empirical Finding:** 

Using a 9311-1 loop antenna between the two coils at the 70 cm. distance and with 20 amperes applied the actual recorded strength was about 10 Gauss or 300000 V/M, 229.5 dBuV/m.

As seen the recorded strength is a few dB higher than calculated and is attributed to mutual inductive coupling between the coils that magnifies the apparent field.

The agreement is quite good and the equivalent empirical magnetic field in tesla at 20 Amps is 1 milli Tesla (10 Gauss, 800 A/M).

### 2.4 Test Set Up

- 2.4.1 The device was placed on a wood table at an 80 cm. height and the loop antenna pair was placed in all axes to assure complete exposure of the EUT. The current was adjusted to the maximum obtainable that was 20 amperes, 40-500 Hz.
- **3.0** <u>MODULATION</u> -- No modulation is specified for this test.

### 4.0 LIMITS AND TEST RESULTS

### 4.1 Magnetic Field Limit - MDS-201-0004 & IEC Recommendation

The magnetic field susceptibility of the device should not be less than the level defined in the AAMI DF-39 medical specification (1 Gauss). The IEC recommendation ranges up to 400 amperes/meter. The EN 61326 requirement is 30 A/M.

### 4.2 <u>RESULTS</u>

The TFT BIV_VUM Valve Controller EP0406 was exposed in three axes to a swept field as measured by Holladay Magnetic Field Probe Model HI-3624. The current was maintained fairly constant at 22 amperes in the range of 40 to 500 Hz resulting in a 10 gauss field being applied in this range. There was no apparent effect on the device due to the 40 Hz to 500 Hz magnetic field. The TFT BIV_VUM EP0406 Controller passed the IEC 61000-4-8 recommendation.

